Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình đẹp lắm lè
kẻ DO _|_ AH tại O
EI _|_ AH tại I
có góc OAD + góc BAD + góc BAH = 180
góc BAD = 90 do AD _|_ AB (gt)
=> góc OAD + góc BAH = 90 (1)
DO _|_ AH (Cách vẽ) => góc DOA = 90
=> góc ODA + góc DAO = 90 (2)
(1)(2) => góc ODA = góc BAH
xét tam giác ODA và tam giác HAB có : góc BHA = góc DOA = 90
AD = AB (gt)
=> tam giác ODA = tam giác HAB (ch - gn)
=> DO = AH (định nghĩa) (3)
làm tương tự với tam giác AHC và tam giác EIA
=> AH = EI (4)
(3)(4) => DO = EI
có EI; DO _|_ AH (cách vẽ)=> EI // DO => góc IEK = góc KDO (định lí)
xét tam giác ODK và tam giác IEK có : góc DOK = góc EIK = 90
=> tam giác ODK = tam giác IEK (cgv - gnk)
=> DK = KE mà K nằm giữa D và E
=> K là trung điểm của DE
câu a
ta xét \(\Delta DPA\) và \(\Delta AHB\) có \(\widehat{P}=\widehat{H}=90^0\) có \(\widehat{DAP}=\widehat{ABH}\) do cùng phụ với góc BAH và AD=AB
nên hai tam giác bằng nhau theo trường hợp cạnh huyền góc nhọn. do đó DP=AH
b. hoàn toàn tương tự ta chứng minh được EQ=AH do đó DP=EQ.
mà DP//EQ ( cùng vuông góc với AH) nên DPEQ là hình bình hành nên K là trung điểm DE
Bài này chị làm đc rồi
chị đăng cho Hiếu làm thôi
ko làm đc thì bảo chị nhé
Đúng mà thử vẽ hình coi
minh chiu