K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

\(-\dfrac{4}{5}\sqrt{50-25x}-\dfrac{2}{3}\sqrt{18-9x}+6=0\left(x\le2\right)\\ \Leftrightarrow-\dfrac{4}{5}\cdot5\sqrt{2-x}-\dfrac{2}{3}\cdot3\sqrt{2-x}=-6\\ \Leftrightarrow-2\sqrt{2-x}=-6\\ \Leftrightarrow\sqrt{2-x}=3\Leftrightarrow2-x=9\\ \Leftrightarrow x=-7\left(tm\right)\)

9 tháng 7 2019

Lần sau bạn nhớ ghi đúng đề nhé!

\(\sqrt{25x+75}+3\sqrt{x-2}=2+4\sqrt{x+3}-\sqrt{9x-18}\)

Đk: \(x\ge2\)

pt <=> \(\sqrt{25\left(x+3\right)}+3\sqrt{x-2}=2+4\sqrt{x+3}-\sqrt{9\left(x-2\right)}\)

\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2+4\sqrt{x+3}-3\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{x+3}+6\sqrt{x-2}=2\)

\(\Leftrightarrow x+3+36\left(x-2\right)+12\sqrt{\left(x+3\right)\left(x-2\right)}=4\)

\(\Leftrightarrow12\sqrt{x^2+x-6}=73-37x\)

phương trình vô nghiệm vì \(x\ge2\Rightarrow73-37x< 0\)mà \(VT\ge0\)

6: \(=3\cdot2\sqrt{3}-4\cdot3\sqrt{3}+5\cdot4\sqrt{3}=14\sqrt{3}\)

7: \(=2\sqrt{3}+5\sqrt{3}-4\sqrt{3}=3\sqrt{3}\)

8: \(=2\cdot4\sqrt{2}+4\cdot2\sqrt{2}-5\cdot3\sqrt{2}=\sqrt{2}\)

9: \(=3\cdot2\sqrt{5}-2\cdot3\sqrt{5}+4\sqrt{5}=4\sqrt{5}\)

10: \(=2\cdot2\sqrt{6}-2\cdot3\sqrt{6}+3\sqrt{6}-5\sqrt{6}=-4\sqrt{6}\)

17 tháng 9 2021

\(2,\\ a,\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(x\ge1\right)\\ \Leftrightarrow2\sqrt{x-1}+3\sqrt{x-1}-5\sqrt{x-1}=7\\ \Leftrightarrow0\sqrt{x-1}=7\Leftrightarrow x\in\varnothing\\ b,\sqrt{2x^2-3}=4\left(x\le-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\le x\right)\\ \Leftrightarrow2x^2-3=16\\ \Leftrightarrow x^2=\dfrac{19}{2}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)

17 tháng 9 2021

\(1,\\ A=\sqrt{5+4x}+\sqrt{7-3x}\\ ĐKXĐ:\left\{{}\begin{matrix}5+4x\ge0\\7-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le\dfrac{7}{3}\end{matrix}\right.\)

 

9 tháng 9 2021

a) \(\sqrt{\left(x-3\right)^2}=2\Leftrightarrow\left|x-3\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

b) \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\left(đk:x\ge-2\right)\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\Leftrightarrow\sqrt{x+2}=3\Leftrightarrow x+2=9\Leftrightarrow x=7\)

a: \(\sqrt{\left(x-3\right)^2}=2\)

\(\Leftrightarrow\left|x-3\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

b: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow x+2=9\)

hay x=7

30 tháng 5 2022

1) \(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}\)

\(=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}\)

\(=-6\sqrt{2}\)

2) \(\sqrt{50}-\sqrt{18}+\sqrt{200}-\sqrt{162}\)

\(=5\sqrt{2}-3\sqrt{2}+10\sqrt{2}-9\sqrt{2}\)

\(=3\sqrt{2}\)

3) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)

\(=5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)

\(=-2\sqrt{5}\)

4) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)

\(=20\sqrt{3}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}\)

\(=4\sqrt{3}\)

5) \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)

\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\dfrac{10}{3}\sqrt{3}\)

\(=-\dfrac{17}{3}\sqrt{3}\)