K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

Đáp án D.

Gọi n là số đỉnh của đa giác đều.

Khi đó số đường chéo của đa giác đều đó là n n - 3 2 .

Giải phương trình  n n - 3 2 = 54 ⇔ n 2 - 3 n - 108 = 0 ⇒ n = 12

⇒  Đa giác có 6 đường chéo đi qua tâm.

Cứ hai đường chéo đi qua tâm thì tạo thành một hình chữ nhật. Vậy số hình chữ nhật có 4 đỉnh là 4 đỉnh của đa giác đều đã cho là C 6 2 = 15 .

2 tháng 8 2019

Đáp án D.

Gọi n là số đỉnh của đa giác đều.

Khi đó số đường chéo của đa giác đều đó là  n n − 3 2   .

Giải phương trình  n n − 3 2 = 54 ⇔ n 2 − 3 n − 108 = 0 ⇒ n = 12   .

 Đa giác có 6 đường chéo đi qua tâm C 6 2 = 15 .

Cứ hai đường chéo đi qua tâm thì tạo thành một hình chữ nhật. Vậy số hình chữ nhật có 4 đỉnh là 4 đỉnh của đa giác đều đã cho là .

16 tháng 10 2018

Chọn đáp án A

Trong đa giác đều  A 1 A 2 A 3 . . . A 30  nội tiếp trong đường tròn (O) cứ mỗi điểm A1 có một điểm Ai đối xứng với Al qua O(Al ≠ Ai) ta dược một đường kính.

Tương tự với  A 1 A 2 A 3 . . . A 30 .  tất cả 15 đường kính mà các điểm là đỉnh của đa giác đều  A 1 A 2 A 3 . . . A 30

Cứ hai đường kính đó ta được một hình chữ nhật mà bốn điểm là các đỉnh của đa giác đều: có  C 15 2 = 105 hình chữ nhật tất cả.

2 tháng 5 2017

Chọn đáp án A

Trong đa giác đều  A 1 A 2 A 3 . . . A 30 nội tiếp trong đường tròn (O) cứ mỗi điểm A 1 có một điểm A I  đối xứng với  A 1  qua O A 1 ≠ A I ta dược một đường kính.

Tương tự với A 2 , A 3 , . . . , A 30 . Có tất cả 15 đường kính mà các điểm là đỉnh của đa giác đều  A 1 A 2 A 3 . . . A 30

Cứ hai đường kính đó ta được một hình chữ nhật mà bốn điểm là các đỉnh của đa giác đều: có C 15 2 = 105 hình chữ nhật tất cả.

a: Số đường chéo là:

\(\dfrac{24\left(24-3\right)}{2}=12\cdot21=252\)

b: 24 đỉnh =>12 đường kính

chọn 1 đường kính =>Sẽ có 22 điểm còn lại

=>Có 22*12=264 tam giác vuông

a: Số đường chéo là 24*21/2=21*12=336(đường chéo)

b: Số tam giác vuông tạo thành là:12*22=264 tam giác

9 tháng 6 2023

a. Để tính số đường chéo của một đa giác đều n đỉnh, ta dùng công thức: số đường chéo = n(n-3)/2. Áp dụng vào trường hợp này, ta có số đường chéo của đa giác đều 24 đỉnh là: 24(24-3)/2 = 276 đường chéo.

b. Để lập được một tam giác vuông từ các đỉnh của đa giác đều 24 đỉnh, ta cần chọn 3 đỉnh sao cho 2 trong số đó nằm trên cùng một đường kính của đa giác. Có tổng cộng 24 cách chọn đỉnh trên đường kính và vì mỗi tam giác vuông sẽ được lập bởi 2 đường kính khác nhau, nên số tam giác vuông lập được từ các đỉnh của đa giác đều 24 đỉnh là: 24 x 12 = 288 tam giác vuông. Tuy nhiên, một số tam giác vuông sẽ bị lặp lại khi ta quay đa giác, do đó số tam giác vuông duy nhất là: 288/24 = 12 tam giác vuông.

c. Để lập được một tam giác đều từ các đỉnh của đa giác đều 24 đỉnh, ta cần chọn 3 đỉnh liên tiếp trên đường tròn ngoại tiếp đa giác. Có tổng cộng 24 cách chọn 3 đỉnh liên tiếp, do đó số tam giác đều lập được từ các đỉnh của đa giác đều 24 đỉnh là: 24 tam giác đều.

d. Để lập được một tứ giác từ các đỉnh của đa giác đều 24 đỉnh, ta cần chọn 4 đỉnh bất kỳ. Có tổng cộng C(24,4) cách chọn 4 đỉnh, do đó số tứ giác lập được từ các đỉnh của đa giác đều 24 đỉnh là: C(24,4) = 10626 tứ giác.

e. Để lập được một hình chữ nhật từ các đỉnh của đa giác đều 24 đỉnh, ta cần chọn 4 đỉnh sao cho 2 đỉnh đối diện của hình chữ nhật nằm trên cùng một đường kính của đa giác. Có tổng cộng 24 cách chọn đỉnh trên đường kính và vì mỗi hình chữ nhật sẽ được lập bởi 2 đường kính khác nhau, nên số hình chữ nhật lập được từ các đỉnh của đa giác đều 24 đỉnh là: 24 x 12 = 288 hình chữ nhật. Tuy nhiên, trong số đó có 24 hình vuông, do đó số hình chữ nhật mà không phải là hình vuông là: 288 - 24 = 264 hình chữ nhật.

Spo

d: Số tứ giác tạo thành là: \(C^4_{24}\)

 

14 tháng 2 2017

Đáp án A.

Có 10 đường kính của đường tròn được nối bởi 2 đỉnh của đa giác đều

Một hình chữ nhật có 4 đỉnh là đỉnh của đa giác được tạo bởi 2 đường kính nói trên

Số cách chọn 4 đỉnh của đa giác là C 20 4

Số cách chọn 4 đỉnh của hình chữ nhật là  C 20 2

Vậy xác suất cần tính là  P = C 10 2 C 20 4 = 3 323

4 tháng 6 2017

Đáp án A

Ta có số cách chọn 4 đỉnh:  

Hình hai mươi cạnh đều có 10 đường chéo đi qua tâm và chúng đều bằng nhau

Cứ hai đường chéo gộp lại ta được hai đường chéo của một hình chữ nhật

Vậy có tất cả   hình chữ nhật thỏa mãn 4 đỉnh là 4 trong 20 đỉnh của hình cho

Kết luận: