Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Gọi n là số đỉnh của đa giác đều.
Khi đó số đường chéo của đa giác đều đó là n n − 3 2 .
Giải phương trình n n − 3 2 = 54 ⇔ n 2 − 3 n − 108 = 0 ⇒ n = 12 .
Đa giác có 6 đường chéo đi qua tâm C 6 2 = 15 .
Cứ hai đường chéo đi qua tâm thì tạo thành một hình chữ nhật. Vậy số hình chữ nhật có 4 đỉnh là 4 đỉnh của đa giác đều đã cho là .
Chọn đáp án A
Trong đa giác đều A 1 A 2 A 3 . . . A 30 nội tiếp trong đường tròn (O) cứ mỗi điểm A 1 có một điểm A I đối xứng với A 1 qua O A 1 ≠ A I ta dược một đường kính.
Tương tự với A 2 , A 3 , . . . , A 30 . Có tất cả 15 đường kính mà các điểm là đỉnh của đa giác đều A 1 A 2 A 3 . . . A 30
Cứ hai đường kính đó ta được một hình chữ nhật mà bốn điểm là các đỉnh của đa giác đều: có C 15 2 = 105 hình chữ nhật tất cả.
Đáp án A.
Có 10 đường kính của đường tròn được nối bởi 2 đỉnh của đa giác đều.
Một hình chữ nhật có 4 đỉnh là đỉnh của đa giác được tạo bởi 2 đường kính nói trên.
Số cách chọn 4 đỉnh của đa giác là C 20 4 Số cách chọn 4 đỉnh của hình chữ nhật là C 20 2 .
Vậy xác suất cần tính là P = C 10 2 C 20 4 = 45 4845 = 3 323 .
Đáp án C
Có 10 đường kính của đường tròn được nối bởi 2 đỉnh của đa giác đều.
Mỗi hình chữ nhật có 4 đỉnh là đỉnh của đa giác được tạo bởi 2 đường kính nói trên,
Số cách chọn 4 đỉnh của đa giác là C 20 4
Số cách chọn 4 đỉnh của đa giác tạo thành hình chữ nhật là C 10 4
Xác suất cần tìm là C 20 4 C 10 4 = 3 323
Đáp án B
Có 10 đường kính của đường tròn được nối bởi 2 đỉnh của đa giác đều.
Mỗi hình chữ nhật có 4 đỉnh là đỉnh của đa giác được tạo bởi 2 đường kính nói trên,
Số cách chọn 4 đỉnh của đa giác là C 20 4
Số cách chọn 4 đỉnh của đa giác tạo thành hình chữ nhật là C 10 2
Đáp án D
Đa giác đều 2n đỉnh có n đường chéo qua tâm. Cứ 2 đường chéo qua tâm tương ứng với 1 hình chữ nhật có 4 đỉnh là đỉnh của đa giác. Do đó số hình chữ nhật là C n 2
Chọn C.
Phương pháp:
Nhận xét rằng: Đa giác đều có số đỉnh chẵn luôn tồn tại đường kính của đường tròn ngoại tiếp đa giác là đoạn nối hai đỉnh của đa giác.
Nên ta chia đường tròn ngoại tiếp đa giác đều đó thành hai nửa đường tròn và dựa vào tính đối xứng của các đỉnh để tạo thành một hình chữ nhật
Cách giải:
Ta vẽ đường tròn ngoại tiếp đa giác đều 2018 đỉnh. Vẽ một đường kính của đường tròn này. Khi đó hai nửa đường tròn đều chứa 1009 đỉnh.
Với mỗi đỉnh thuộc nửa đường tròn thứ nhất ta đều có một đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại.
Như vậy cứ hai đỉnh thuộc nửa đường tròn thứ nhất ta xác định được hai đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại, bốn đỉnh này tạo thành một hình chữ nhật.
Vậy số hình chữ nhật có 4 đỉnh là các đỉnh của đa giác đã cho là C 1009 2
Đáp án C
Chọn ngẫu nhiên 4 đỉnh của đa giác có C 20 4 = 4845 cách
Đa giác đều 20 đỉnh có 10 đường chéo đi qua tâm đường tròn ngoại tiếp đa giác
Cứ 2 đường chéo bất kì là 2 đường chéo cuiả 1 hình chữ nhật
Do đó số hình chứ nhật là C 20 2 = 45
Vậy xác suất cần tìm là P = 45 4845 = 3 323
Đáp án A
Tập hợp các tứ giác được lập từ bốn đỉnh của đa giác là: C 30 4 = 27405
Ta có: số đường chéo đi qua tâm của đa giác đều là 15
Để tứ giác thu được là hình chữ nhật. Chọn 2 đường chéo từ 15 đường chéo đi qua tâm:
C 15 2 = 105
Xác suất tìm được là 1 261
Đáp án D.
Gọi n là số đỉnh của đa giác đều.
Khi đó số đường chéo của đa giác đều đó là n n - 3 2 .
Giải phương trình n n - 3 2 = 54 ⇔ n 2 - 3 n - 108 = 0 ⇒ n = 12
⇒ Đa giác có 6 đường chéo đi qua tâm.
Cứ hai đường chéo đi qua tâm thì tạo thành một hình chữ nhật. Vậy số hình chữ nhật có 4 đỉnh là 4 đỉnh của đa giác đều đã cho là C 6 2 = 15 .