K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2015

x = -(111774096*i-41190385)/129759056;

x = -(69261717*i+47884985)/85790495;

x = -(8687406*i-24825665)/33515385;

x = (8687406*i+24825665)/33515385

x = (69261717*i-47884985)/85790495

x = (111774096*i+41190385)/129759056

 

26 tháng 12 2015

x6-x5+x4-x3+x2-x+1/2=0

=>x5(x-1)+x3(x-1)+x(x-1)+1/2=0

=>(x5+x3+x)(x-1)+1/2=0

thông cảm,mình mới lớp 7

23 tháng 5 2016

A=\(\frac{13-x}{x+3}+\frac{6x^2+6}{x^4-8x^2-9}-\frac{3x+6}{\left(x+2\right)\left(x+3\right)}-\frac{2}{x-3}=0\)\(\Leftrightarrow\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{\left(x-3\right)\left(x+3\right)\left(x^2+1\right)}-\frac{3\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{2}{x-3}=0\) ( với \(x^4-8x^2-9=x^4-9x^2+x^2-9=x^2\left(x^2-9\right)+\left(x^2-9\right)=\left(x^2-9\right)\left(x^2+1\right)=\left(x-3\right)\left(x+3\right)\left(x^2+1\right)\)  

A= \(\frac{13-x}{x+3}+\frac{6}{\left(x-3\right)\left(x+3\right)}-\frac{3}{x+3}-\frac{2}{x-3}=0\) \(\Leftrightarrow\frac{10-x}{x+3}+\frac{6}{\left(x-3\right)\left(x+3\right)}-\frac{2}{x-3}=0\) \(\Leftrightarrow\left(10x-30\right)\left(x-3\right)+6-2\left(x+3\right)=0\Leftrightarrow-x^2+11x-30=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=6\\x=5\end{array}\right.\)

bach nhac lam Xl nha đến đây -----> bí

1 tháng 1 2020

Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ

Mn giúp em vs ạ! Thanks trước!

23 tháng 5 2016

ĐK: \(x\ne-3,3,-2\)

Ta có: \(\frac{13-x}{x+3}+\frac{6x^2+6}{x^4-8x^2-9}-\frac{3x+6}{x^2+5x+6}-\frac{2}{x-3}=0\)

=>\(\frac{13-x}{x+3}+\frac{6x^2+6}{x^4-9x^2+x^2-9}-\frac{3x+6}{x^2+3x+2x+6}-\frac{2}{x-3}=0\)

=>\(\frac{13-x}{x+3}+\frac{6x^2+6}{x^2.\left(x^2-9\right)+\left(x^2-9\right)}-\frac{3x+6}{x.\left(x+3\right)+2.\left(x+3\right)}-\frac{2}{x-3}=0\)

=>\(\frac{13-x}{x+3}+\frac{6.\left(x^2+1\right)}{\left(x^2+1\right).\left(x^2-9\right)}-\frac{3.\left(x+2\right)}{\left(x+2\right).\left(x+3\right)}-\frac{2}{x-3}=0\)

=>\(\frac{13-x}{x+3}+\frac{6}{x^2-9}-\frac{3}{x+3}-\frac{2}{x-3}=0\)

=>\(\left(\frac{13-x}{x+3}-\frac{3}{x+3}\right)+\left(\frac{6}{x^2-9}-\frac{2}{x-3}\right)=0\)

=>\(\frac{13-x-3}{x+3}+\left[\frac{6}{x^2-9}-\frac{2.\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}\right]=0\)

=>\(\frac{10-x}{x+3}+\left[\frac{6}{x^2-9}-\frac{2x+6}{x^2-9}\right]=0\)

=>\(\frac{10-x}{x+3}+\frac{6-2x-6}{x^2-9}=0\)

=>\(\frac{\left(10-x\right).\left(x-3\right)}{\left(x+3\right).\left(x-3\right)}+\frac{-2x}{x^2-9}=0\)

=>\(\frac{13x-x^2-30}{x^2-9}-\frac{2x}{x^2-9}=0\)

=>\(\frac{13x-x^2-30-2x}{x^2-9}=0\)

=>\(\frac{11x-x^2-30}{x^2-9}=0\)

Vì \(x\ne-3,3=>x^2\ne0\)

=>11x-x2-30=0

=>6x-30-x2+5x=0

=>6.(x-5)-x.(x-5)=0

=>(6-x).(x-5)=0

=>6-x=0=>x=6

hoặc x-5=0=>x=5

Vậy tập nghiệm của phương trình S=6; 5

23 tháng 5 2016

Em ước gì được ên lớp 8 để giúp anh  Hoàng Phúc

5 tháng 10 2015

ĐK:.....

\(\left(\frac{1}{x}+\frac{1}{x+7}\right)+\left(\frac{1}{x+2}+\frac{1}{x+5}\right)=\left(\frac{1}{x+1}+\frac{1}{x+6}\right)+\left(\frac{1}{x+3}+\frac{1}{x+4}\right)\)

=> \(\frac{2x+7}{x\left(x+7\right)}+\frac{2x+7}{\left(x+2\right)\left(x+5\right)}=\frac{2x+7}{\left(x+1\right)\left(x+6\right)}+\frac{2x+7}{\left(x+3\right)\left(x+4\right)}\)

=> \(\left(2x+7\right)\left(\frac{1}{x\left(x+7\right)}+\frac{1}{\left(x+2\right)\left(x+5\right)}-\frac{1}{\left(x+1\right)\left(x+6\right)}-\frac{1}{\left(x+3\right)\left(x+4\right)}\right)=0\)

=> 2x + 7 = 0 hoặc \(\frac{1}{x\left(x+7\right)}+\frac{1}{\left(x+2\right)\left(x+5\right)}-\frac{1}{\left(x+1\right)\left(x+6\right)}-\frac{1}{\left(x+3\right)\left(x+4\right)}=0\)

+)  2x + 7 = 0 => x = -7/2 (T/m)

+) \(\frac{1}{x^2+7x}+\frac{1}{x^2+7x+10}-\frac{1}{x^2+7x+6}-\frac{1}{x^2+7x+12}=0\) (*)

Đặt t = x+ 7x . Khi đó pt có dạng

\(\frac{1}{t}+\frac{1}{t+10}-\frac{1}{t+6}-\frac{1}{t+12}=0\)

=> (t + 10)(t + 6)(t + 12) + t(t + 6)(t + 12) - t(t + 10)(t + 12) - t(t + 10)(t + 6) = 0 

=> [(t + 10)(t + 6)(t + 12) - t(t + 10)(t + 12)] + [t(t + 6)(t + 12) - t(t + 10)(t + 6)] = 0 

=> 6(t + 10)(t + 12) + 2t(t + 6) = 0 

<=> 6t2 + 132t  + 720 + 2t+ 12t = 0 

=> 8t2 + 144t + 720 = 0  (PT này vô nghiêm)

=> (*) Vô nghiệm

Vậy PT đã cho có nghiệm là x = -7/2

NV
26 tháng 5 2019

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\frac{x-2}{x+1}=a\\\frac{x+2}{x-1}=b\end{matrix}\right.\) pt trở thành:

\(5a^2-44b^2+12ab=0\) \(\Leftrightarrow\left(a-2b\right)\left(5a+22b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\5a=-22b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{x-2}{x+1}=\frac{2x+4}{x-1}\\\frac{5x+10}{x-1}=\frac{-22x-44}{x-1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x-2\right)-\left(2x-4\right)\left(x+1\right)=0\\\left(5x+10\right)\left(x-1\right)+\left(22x+44\right)\left(x-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

14 tháng 6 2015

Đặt x2-3x+4=a

=>\(\frac{1}{a-1}+\frac{2}{a}=\frac{6}{a+1}\)

ĐKXĐ:a khác 1 ; -1 ;0

=>a2+a+2a2-2=6a2-6a

<=>6a2-3a2-a-6a+2=0

<=>3a2-7a+2=0

<=>(3a-1)(a-2)=0

<=>a=1/3 hoặc a=2

*)a=1/3

=>x2-3x+4=1/3

<=>x2-3x+11/3=0

<=>(x-1,5)2+17/12=0(vô lí)

*)a=2

=>x2-3x+4=2

<=>x2-3x+2=0

<=>(x-1)(x-2)=0

<=>x=1 hoặc x=2

Vậy x={1;2}
 

11 tháng 4 2016

Bạn tự phân tích đa thức thành nhân tử nhé! 

\(1.\)

\(2x^3+x+3=0\)

\(\Leftrightarrow\)  \(\left(x+1\right)\left(2x^2-2x+3\right)=0\)  \(\left(1\right)\)

Vì  \(2x^2-2x+3=2\left(x^2-x+1\right)+1=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>0\)  với mọi  \(x\in R\)

nên từ  \(\left(1\right)\)  \(\Rightarrow\)  \(x+1=0\)  \(\Leftrightarrow\)  \(x=-1\)

11 tháng 4 2016

1)2x^3+x+3=0=>

27 tháng 4 2020

f) ĐKXĐ: \(x\ge-\frac{3}{2}\)

Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)

Lũy thừa 6 cả 2 vế lên PT tương đương:

\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)

Cái ngoặc to vô nghiệm vì nó tương đương:

\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))

Vậy x = 3.

PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra

25 tháng 4 2020

@Akai Haruma, @Nguyễn Việt Lâm

giúp em vs ạ! Cần gấp ạ

em cảm ơn nhiều!