K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2020

Đặt A = 35371 + 572016 + 922017

= 31342.4 . 33 + 574.504 + 924.504.92

= (34)1342.(..7) + (574)504 + (924)504.(...2)

= (...1)1342.(...7) + (...1)504 + (...6)504.(...2)

= (...1).(...7) + (...1) + (...6).(...2)

= (...7) + (...1) + (...2)

= (...0) \(⋮\)10 

Vậy \(A⋮\)10 (đpcm)

26 tháng 10 2018

a) 

\(5n+3⋮n+2\)

\(5n+10-7⋮n+2\)

\(5\left(n+2\right)-7⋮n+2\)

mà \(5\left(n+2\right)⋮n+2\Rightarrow7⋮n+2\)

\(\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta có bảng :

n+21-17-7
n-1-35-9

Vậy x = { -9; -3; -1; 5 }

29 tháng 10 2018

Đề ra là số tự nhiên mà không phải số nguyên âm làm đúng rồi bỏ nguyên âm đi là ok

14 tháng 11 2016

số trên sẽ có tổng các chữ số bằng 1

=>số 102017+2016 ko chia hết cho 3

14 tháng 11 2016

10^2017 có tổng các chữ số bằng 1

2016 có tổng các chữ số bằng 9

Mà 1+9=10 không chia hết cho 3 nên 10^2017+ không chia hết cho 3

9 tháng 12 2019

Ta có : S=22020+22019+22018+22017+22016+22015+22014+22013

              =22013(27+26+25+24+23+22+2+1)

             =22013.255

Vì 255\(⋮\)15 nên 22013.255\(⋮\)15

hay S\(⋮\)15

Vậy S\(⋮\)15.

7 tháng 9 2015

chư số cuối của 122012 và 22016 đều là 2 mà 2-2=0

chư số cuối của 19215 và 111000 dều là 1 mà 1-1=0

tất cả các số cá tận cùng là 0 thì chia hết cho 10

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn