K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

MONG CÁC BẠN GIÚP ĐỠ MÌNH GIẢI CÂU NÀY

1. Cho 2 góc kề bù xOy và yOz. Gọi Om, On lần lượt là các tia phân giác của góc xOy; yOza. Cm Om  I  Onb. Lấy điểm H thuộc tia Oy. Kẻ tia HE  I  Om, HK  I  On (  \(E\in Om;K\in On\)). CM góc EHK = 90oc. Trên nửa mặt phẳng bờ OH có chứa tia Ox, kẻ tia Ht // Ox. Ht cắt Om tại P. CM HE là tia phân giác của  góc OHPd. Giả sử 3.OHP = 2.HOx. Tính HOx và OPH2. Cho tam giác AMN có góc A = 82o; M = 49o. Gọi AP là tia đối của tia AM....
Đọc tiếp

1. Cho 2 góc kề bù xOy và yOz. Gọi Om, On lần lượt là các tia phân giác của góc xOy; yOz

a. Cm Om   On

b. Lấy điểm H thuộc tia Oy. Kẻ tia HE  I  Om, HK  I  On (  \(E\in Om;K\in On\)). CM góc EHK = 90o

c. Trên nửa mặt phẳng bờ OH có chứa tia Ox, kẻ tia Ht // Ox. Ht cắt Om tại P. CM HE là tia phân giác của  góc OHP
d. Giả sử 3.OHP = 2.HOx. Tính HOx và OPH

2. Cho tam giác AMN có góc A = 82o; M = 49o. Gọi AP là tia đối của tia AM. Kẻ tia Ax nằm trong góc PAN và song song với MN

a. CM Ax là tia phân giác của góc PAN

b. Từ N kẻ NE // AM \(\left(E\in\text{Ax}\right)\text{ }\). So sánh các cặp góc của 2 tam giac AMN và AEN

c. Vẽ đường thẳng d đi qua M và vuông góc với MN, từ A kẻ AB vuông góc với d \((B\in d)\). CM rằng B,A,E thẳng hàng

3.Cho tam giác ABC có góc A = 90o Kẻ tia phân giác của góc ABC cắt AC tại M. Từ A kẻ đường thẳng song song với BM, cắt tia đối của tia BC tại D

a. CM góc DAB = BDA

b. Trên nửa mặt phẳng bờ BC không chứa A, vẽ tia Ay sao cho góc CAy = C. CM rằng đường thẳng BM cắt đường thẳng chứa tia Ay

c. Trên nửa mặt phẳng bờ BC khoongchuasw A, vẽ tia Bz sao cho góc ABz = 90o. CM góc CAy = CBz

2
17 tháng 10 2019

giúp mk với
mk đang cần gấp

TT-TT

17 tháng 10 2019

TL 1 câu cx đc mà

21 tháng 9 2017

bài 1:

a) vì góc xAy và góc xBy là hai góc đồng vị (đều =40độ)

suy ra :Ay // Bz

18 tháng 8 2019

1.
B A x M y N z

a.Hai góc xBz và xAy là hai góc đồng vị.Nếu \(\widehat{xBz}=40^0\)thì \(\widehat{xBz}=\widehat{xAy}\)nên hai đường thẳng Bz và Ay song song

b. AM,BN lần lượt là tia p/g của góc xAy và xBz nên \(\widehat{xAm}=\frac{1}{2}\widehat{xAy}=20^0,\widehat{xBN}=\frac{1}{2}\widehat{xBz}=20^0\), suy ra \(\widehat{xAM}=\widehat{xBN}\)

Hai góc này ở vị trí đồng vị của hai đường thẳng AM và BN cắt đường thẳng Bx,do đó \(AM//BN\)

2. Câu hỏi của Cao Thi Khanh Chi - Toán lớp 8 - Học toán với OnlineMath

Tham khảo nhé