CMR:
a) Nếu a đồng dư 1 (mod2) thì a^2 đồng dư 1 (mod 8)
b) Nếu a đồng dư 1(mod 3) thì a^3 đồng dư 1 (mod9)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
$a\equiv 1\pmod 2$ nên $a$ có dạng $2k+1$ $(k\in\mathbb{Z}$
Khi đó:
$a^2=(2k+1)^2=4k^2+4k+1=4k(k+1)+1$
Vì $k(k+1)$ là tích 2 số nguyên liên tiếp nên $k(k+1)\vdots 2$
$\Rightarrow 4k(k+1)\vdots 8$
$\Rightarrow a^2=4k(k+1)+1$ chia $8$ dư $1$ hay $a^2\equiv 1\pmod 8$
b)
$a\equiv 1\pmod 3\Rightarrow a-1\equiv 0\pmod 3(1)$ hay
Lại có:
$a\equiv 1\pmod 3\Rightarrow a^2+a+1\equiv 1+1+1\equiv 0\pmod 3(2)$
Từ $(1);(2)\Rightarrow (a-1)(a^2+a+1)\equiv 0\pmod 9$
hay $a^3-1\equiv 0\pmod 9\Leftrightarrow a^3\equiv 1\pmod 9$
Câu 1 cách làm:
Cậu có thể đưa ra chữ số tận cùng của mỗi lũy thừa, ví dụ như thế này để tính
2^(4k+1) có tận cùng là 2 nên 2^2009 có tận cùng là 2(2009=4.502+1)
Bạn tham khảo lời giải tại đây:
Câu hỏi của Angela jolie - Toán lớp 9 | Học trực tuyến
\(\overline{abc\equiv0}\) (mod 21)
<=> 100a +10b+c\(\equiv\)0 (mod 21)
<=> 84a+16a+10b+c\(\equiv\)0 (mod 21)
<=> 16a+10b+c\(\equiv\)0 (mod 21) vì 84\(⋮\)21
<=> 64a+40b+4c\(\equiv\)0 (mod 21)
<=> 63a+a+42b-2b+4c\(\equiv\)0 (mod 21)
<=> a-2b+4c\(\equiv\)0 (mod 21) đpcm