Cho A = 2n - 3/n-2 .a Tim n de A e Z . b Chung minh rang A :
a)A la phan so toi gian
b)Tim n de A e Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3n+2}{6n+3}\) là phân số tối giản <=>3n+2 và 6n+3 là 2 số ntố cùng nhau
Gọi (3n+2;6n+3)=d
=>3n+2 chia hết cho d <=>2(3n+2)chia hết cho d
<=>6n+4 chia hết cho d
mà 6n+3 cũng chia hết cho d nên
(6n+3)(6n+4) chia hết cho d
mà đây là 2 số liên tiếp
=>d=1
=>A là ps tối giản
nhớ tick mình nha ,cảm ơn
thôi còn thắc mắc gì nữa ko được ns như thế với bn mik nghe chưa.
a,A là phân số<=>n+2 \(\ne\) 0<=>n \(\ne\) -2
b, để A là p/s thì 6 chia het cho n+2
=>n+2 E Ư(6)={-6;-3;-2;-1;1;2;3;6}
=>n E {-8;-5;-4;-3;-1;0;1;4}
Nhớ tick
a) Gọi \(\left(2n-3;n-2\right)=d\)
Ta có: \(\hept{\begin{cases}\left(2n-3\right)⋮d\\\left(n-2\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2n-3\right)⋮d\\\left(2n-4\right)⋮d\end{cases}}\)
\(\Rightarrow\left(2n-3\right)-\left(2n-4\right)⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
\(\Rightarrow\left(2n-3;n-2\right)=1\)
=> 2n-3 và n-2 nguyên tố cùng nhau
=> A tối giản
b) \(A=\frac{2n-3}{n-2}=\frac{\left(2n-4\right)+1}{n-2}=2+\frac{1}{n-2}\)
Để A nguyên => \(\frac{1}{n-2}\inℤ\Rightarrow n-2\in\left\{-1;1\right\}\)
=> \(n\in\left\{1;3\right\}\) với n nguyên