Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Để A là phân số thì n+1<>0
hay n<>-1
b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
\(a;\frac{2n+5}{n+3}\)
Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)
\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)
\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản
\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)
Với \(B\in Z\)để n là số nguyên
\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{-2;-4\right\}\)
Vậy.....................
a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)
\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)
Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)
Vậy tta có đpcm
b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)
hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)
-n - 3 | 1 | -1 |
n | -4 | -2 |
để P thuộc Z =>2n+1 chia hết cho n+5
=>2n+10-9 chia hết cho n+5
=>2(n+5)-9 chia hết cho n+5
=>9 chia hết cho n+5
\(\Rightarrow n+5\in\left\{-9;-3;-1;1;3;9\right\}\)
\(\Rightarrow n\in\left\{-14;-8;-6;-4;-2;4\right\}\)
vì n-1 là Ư của 5 => n-1=1 hoặc 5
n-1=5=>n=6
n-1=1=>n=2
=> n =6 hoặc n=2
thong oy ấy k ik
n-1 là ước của 5 => n-1 E { 1;-1;5;-5 }
- với n-1=1 => n=2
- với n-1=-1 => n=0
- với n-1=5 => n=6
- với n-1= -5 => n=-4
vậy n={ 0;2;-4;6 }
b) A= -5/m-1 có giá trị nguyên => -5 chia hết cho m-1 hay m-1 E Ư(-5)={ -1; 1; 5; -5 }
- với m-1= -1 => m=0
- với m-1= 1 => m = 2
- với m-1=5 => m=6
- m-1= -4 => m= --3
vậy m={ 0;2;-3;6 }