K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2020

Vẽ hình bình hành DAFH.

Gọi N là giao điểm của hai đường chéo DF và AH, M là giao điểm của EH và BC

Ta có NA = NH, ND = NF

Ta đặt ^ADH = ^AFH = \(\alpha\)thì ^BDH = ^HFC = \(\alpha\)+ 600

^DAF = 1800 -\(\alpha\)

^BAC = 3600 - ^BAD - ^CAF - ^DAF = 3600 - 600 - 600 - (1800 - \(\alpha\)) = \(\alpha\)+ 600

\(\Delta\)BDH và \(\Delta\)HFC có: BD = HF (= AD); ^BDH = ^HFC (cmt); DH = FC (= AF)

Do đó \(\Delta\)BDH = \(\Delta\)HFC (c.g.c) => HB = HC                                                           (1)

Chứng minh tương tự, ta được \(\Delta\)BAC = \(\Delta\)HFC (c.g.c) => BC = HC                   (2)

Từ (1) và (2) suy ra HB = HC = BC

Tứ giác BHCE có các cặp cạnh đối bằng nhau  (cùng bằng BC) nên là hình bình hành => MB = MC và MH = ME

  • Xét ∆AEH có AM và AN là hai đường trung tuyến nên giao điểm G của chúng là trọng tâm => EG = 2/3EN và AG = 2/3AM.
  • Xét ∆ABC có AM là đường trung tuyến mà AG = 2/3AM nên G là trọng tâm của ∆ABC
  • Xét ∆EDF có EN là đường trung tuyến mà EG = 2/3EN nên G là trọng tâm của∆EDF

Vậy ∆ABC và ∆EDF có cùng trọng tâm G

27 tháng 9 2020

Dòng 12 là EN chứ ko pk AN nha, đánh nhầm