Hãy chứng minh:
1/4 + 1/16 + 1/36 + ..... + 1/10000 > 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt S=1/4+1/16+1/36+...+1/10000
S= 1/4x(1+1/4+1/9+...+1/2500)
S= 1/4x(1+1/2x2+1/3x3+...+1/50x50)
S< 1/4x(1+1/1x2+1/2x3+...1/49x50)
S< 1/4x(1+1-1/2+1/2-1/3+....+1/49-1/50)
S< 1/4x(1+1-1/50)
S< 1/4x(2-1/50)<2/4(2/4=1/2)
S< 1/2
S=\(\frac{1}{4}\)(1+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}+...+\frac{1}{50^2}\)
S<\(\frac{1}{4}\)(1+\(\frac{1}{2.1}\)+\(\frac{1}{3.2}+...+\frac{1}{50.49}\))
S<\(\frac{1}{4}\)(1+1−\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\))
S<\(\frac{1}{4}\)(2−\(\frac{1}{50}\))<\(\frac{2}{4}\)=\(\frac{1}{2}\)(đpcm)
Đặt \(A=\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+...+\dfrac{1}{10000}\)
Ta có:
\(A=\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+...+\dfrac{1}{10000}\)
\(\Rightarrow A=\dfrac{1}{4}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)
\(\Rightarrow A< \dfrac{1}{4}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)\)
\(\Rightarrow A< \dfrac{1}{4}\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(\Rightarrow A< \dfrac{1}{4}\left(1+1-\dfrac{1}{50}\right)\)
\(\Rightarrow A< \dfrac{1}{4}.\dfrac{99}{50}\)
\(\Rightarrow A< \dfrac{99}{200}< \dfrac{1}{2}\)
Vậy \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+...+\dfrac{1}{10000}< \dfrac{1}{2}\) (Đpcm)
\(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+...+\dfrac{1}{10000}=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
\(=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)< \dfrac{1}{4}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)=\dfrac{1}{4}\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=\dfrac{1}{4}\left(1+1-\dfrac{1}{50}\right)=\dfrac{1}{4}\left(2-\dfrac{1}{50}\right)< \dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+...+\dfrac{1}{10000}< \dfrac{1}{2}\)
Đặt: \(A=\frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}< \frac{1}{2}\)
Ta có: \(A=\frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}\)
\(\Rightarrow A=\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
\(\Rightarrow A< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)
\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{50}\right)\)
\(\Rightarrow A< \frac{1}{4}.\frac{99}{50}\)
\(\Rightarrow A< \frac{99}{200}< \frac{1}{2}\)
Vậy: \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}< \frac{1}{2}\left(đpcm\right)\)
Đặt \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)
\(A=\frac{1}{4}+\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)=\frac{1}{4}+\frac{1}{4}\cdot B\)
Ta có \(\frac{1}{2^2}< \frac{1}{1\cdot2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3}\)
\(...\)
\(\frac{1}{50^2}< \frac{1}{49\cdot50}=\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{4}\cdot1=\frac{1}{2}\)
\(M=\dfrac{1}{2^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
Ta thấy \(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2};\dfrac{1}{4^2}< \dfrac{1}{3\cdot4};...;\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}\)
\(\Rightarrow M< \dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\\ =\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\\ =\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-1-\dfrac{1}{2}-...-\dfrac{1}{50}\\ =\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}\left(50.số\right)=\dfrac{50}{50}=1\)
Vậy \(M< 1\)
Mình chỉ so sánh với 1 được thôi à :((
S = \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+......+\dfrac{1}{10000}\)
\(\Rightarrow S=\dfrac{1}{4.1}+\dfrac{1}{4.4}+\dfrac{1}{4.9}+.....+\dfrac{1}{4.2500}\)
\(\Rightarrow S=\dfrac{1}{4.\left(1+\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{2500}\right)}< \dfrac{1}{2}\)
\(\RightarrowĐPCM\)
Đề phải là \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}< \frac{1}{2}\) chứ ?
Ta có : \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)
\(=\frac{1}{4}\left(1+\frac{1}{4}+\frac{1}{9}+...+\frac{1}{2500}\right)\)
\(=\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Ta lại có : \(\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)
\(=\frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=\frac{1}{4}\left(2-\frac{1}{50}\right)=\frac{1}{4}.\frac{99}{50}=\frac{99}{200}\)
Mà \(\frac{99}{200}< \frac{1}{2}\)\(\Rightarrow\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}< \frac{99}{200}< \frac{1}{2}\)
\(\Rightarrow\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}< \frac{1}{2}\) ( đpcm )
\(\text{Đặt BT là A }\Rightarrow A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
\(\text{Ta có:}\frac{1}{3^2}>\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\text{(để lại }\frac{1}{4}\text{ở đầu)}\)
\(\frac{1}{4^2}>\frac{1}{4.5}=\frac{1}{4}-\frac{1}{5}\)
.......
\(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow A>\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow A>\frac{1}{4}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow A>\frac{1}{4}+\frac{1}{3}-\frac{1}{101}\Rightarrow A=\frac{7}{12}-\frac{1}{101}=\frac{707-12}{1212}=\frac{695}{1212}>\frac{606}{1212}=\frac{1}{2}\)
\(\Rightarrow A>\frac{1}{2}\)