Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{1}{2^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
Ta thấy \(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2};\dfrac{1}{4^2}< \dfrac{1}{3\cdot4};...;\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}\)
\(\Rightarrow M< \dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\\ =\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\\ =\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-1-\dfrac{1}{2}-...-\dfrac{1}{50}\\ =\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}\left(50.số\right)=\dfrac{50}{50}=1\)
Vậy \(M< 1\)
Mình chỉ so sánh với 1 được thôi à :((
Bài 1: CMR:1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1
Giải
Ta đặt M=1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91
Vậy M<1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
M< 1/2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10
M< (1-1/2) +(1/2-1/3) +(1/3-1/4) +(1/4-1/5) +(1/5-1/6) +(1/6-1/7) +(1/7-1/8) +(1/8-1/9) +(1/9-1/10)
M< 1-1/10 < 9/10 (1)
Vì 9/10 < 1 (2)
Từ(1) và (2) ta có : 1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1
Bài 2:So sánh với 1: 1/4+1/9+1/16 + 1/25 +...+1/10000
Giải
Ta đặt M =1/4+1/9+1/16 + 1/25 +...+1/10000
Hay M = 1/2X2+ 1/3X3+1/4X4+1/5X5 +...+1/100X100
M< 1/1x2+ 1/2x3+1/3x4+1/4x5+...+1/99x100
M< (1-1/2) +(1/2-1/3) +(1/3-1/4) +(1/4-1/5)+...+(1/99-1/100)
M< 1-1/100 < 99/100 (1)
Vì 99/100 < 1 (2)
Từ(1) và (2) ta có : 1/4+1/9+1/16 + 1/25 +...+1/10000 <1
\(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+.....+\frac{1}{10000}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+.....+\frac{1}{100.100}\)
\(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}<\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)\(=1-\frac{1}{100}=\frac{99}{100}<1\)
Vậy \(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+.....+\frac{1}{10000}<1\)
\(M=\frac{1}{1000}+\frac{13}{1000}+\frac{25}{1000}+\frac{37}{1000}+...+\frac{121}{1000}+\frac{133}{1000}\)
\(=\frac{1+13+25+37+...+121+133}{1000}\)
\(=\frac{804}{1000}=\frac{201}{250}\)
\(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{10000}\right)\)
\(=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9999}{10000}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{99.101}{100.100}\)
\(=\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\)
\(=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)
Đề phải là \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}< \frac{1}{2}\) chứ ?
Ta có : \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)
\(=\frac{1}{4}\left(1+\frac{1}{4}+\frac{1}{9}+...+\frac{1}{2500}\right)\)
\(=\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Ta lại có : \(\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)
\(=\frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=\frac{1}{4}\left(2-\frac{1}{50}\right)=\frac{1}{4}.\frac{99}{50}=\frac{99}{200}\)
Mà \(\frac{99}{200}< \frac{1}{2}\)\(\Rightarrow\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}< \frac{99}{200}< \frac{1}{2}\)
\(\Rightarrow\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}< \frac{1}{2}\) ( đpcm )
\(\text{Đặt BT là A }\Rightarrow A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
\(\text{Ta có:}\frac{1}{3^2}>\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\text{(để lại }\frac{1}{4}\text{ở đầu)}\)
\(\frac{1}{4^2}>\frac{1}{4.5}=\frac{1}{4}-\frac{1}{5}\)
.......
\(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow A>\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow A>\frac{1}{4}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow A>\frac{1}{4}+\frac{1}{3}-\frac{1}{101}\Rightarrow A=\frac{7}{12}-\frac{1}{101}=\frac{707-12}{1212}=\frac{695}{1212}>\frac{606}{1212}=\frac{1}{2}\)
\(\Rightarrow A>\frac{1}{2}\)