\(\frac{a}{2020}\)= \(\frac{b}{2021}\)= \(\frac{c}{2022}\)
chứng minh rằng 4(a-b)(b-c)= c-a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\Rightarrow\hept{\begin{cases}a=2020k\\b=2021k\\c=2022k\end{cases}}\)
Khi đó M = 4(a - b)(b - c) - (c - a)2
= 4(2020k - 2021k)(2021k - 2022k) - (2022k - 2020k)2
= 4(-k)(-k) - (2k)2
= 4k2 - 4k2 = 0
Vậy M = 0
Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\)( \(k\ne0\))
\(\Rightarrow a=2020k\); \(b=2021k\); \(c=2022k\)
Thay a, b, c vào biểu thức M ta có:
\(M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
\(=4\left(2020k-2021k\right)\left(2021k-2022k\right)-\left(2022k-2020k\right)^2\)
\(=4.\left(-k\right).\left(-k\right)-\left(2k\right)^2=4k^2-4k^2=0\)
Vậy \(M=0\)
Đặt \(\left(b+c,c+a,a+b\right)\rightarrow\left(x,y,z\right)\)thì \(x,y,z>0\)và \(a=\frac{y+z-x}{2};b=\frac{z+x-y}{2};c=\frac{x+y-z}{2}\)
Bất đẳng thức cần chứng minh trở thành: \(\frac{y+z-x}{2x}+\frac{25\left(z+x-y\right)}{2y}+\frac{4\left(x+y-z\right)}{2z}>2\)
Xét \(VT=\left(\frac{y}{2x}+\frac{z}{2x}-\frac{1}{2}\right)+\left(\frac{25z}{2y}+\frac{25x}{2y}-\frac{25}{2}\right)+\left(\frac{2x}{z}+\frac{2y}{z}-2\right)\)\(=\left(\frac{y}{2x}+\frac{25x}{2y}\right)+\left(\frac{25z}{2y}+\frac{2y}{z}\right)+\left(\frac{z}{2x}+\frac{2x}{z}\right)-15\)\(\ge2\sqrt{\frac{y}{2x}.\frac{25x}{2y}}+2\sqrt{\frac{25z}{2y}.\frac{2y}{z}}+2\sqrt{\frac{z}{2x}.\frac{2x}{z}}-15=2\)(BĐT Cauchy)
Đẳng thức xảy ra khi \(10x=2y=5z\)hay \(10\left(b+c\right)=2\left(c+a\right)=5\left(a+b\right)\)\(\Rightarrow\hept{\begin{cases}10b+8c=2a\\5b+10c=5a\end{cases}}\Leftrightarrow\hept{\begin{cases}2a=10b+8c\\2a=2b+4c\end{cases}}\Leftrightarrow8b+4c=0\)(Vô lí vì 8b + 4c > 0 với mọi b,c dương)
Vậy dấu bằng không xảy ra
Bài này xuất hiện trong câu cuối đề GKI năm ngoái của mình :v
-Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\left\{{}\begin{matrix}\dfrac{a}{2020}=\dfrac{c}{2022}=\dfrac{a-c}{2020-2022}=\dfrac{a-c}{-2}\\\dfrac{a}{2020}=\dfrac{b}{2021}=\dfrac{a-b}{2020-2021}=\dfrac{a-b}{-1}\\\dfrac{c}{2022}=\dfrac{b}{2021}=\dfrac{c-b}{2022-2021}=c-b\end{matrix}\right.\)
\(\Rightarrow c-b=-\left(a-b\right)=\dfrac{a-c}{-2}\)
\(\Rightarrow\left\{{}\begin{matrix}a-c=-2\left(c-b\right)\\a-b=-\left(c-b\right)\end{matrix}\right.\)
\(\left(a-c\right)^3+8\left(a-b\right)^2.\left(c-b\right)=\left[-2\left(c-b\right)\right]^3+8\left[-\left(c-b\right)\right]^2.\left(c-b\right)=-8\left(c-b\right)^3+8\left(c-b\right)^3=0\left(đpcm\right)\)
Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)
=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)
Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)
=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)
Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)
=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)
=> 10B < 10A
=> B < A
b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)
Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)
=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> B < A
Sửa đề chứng minh : 4(a - b)(b - c) = (c - a)2
Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\Rightarrow\hept{\begin{cases}a=2020k\\b=2021k\\c=2022k\end{cases}}\)
Khi đó 4(a - b)(b - c) = 4(2020k - 202k)(2021k - 2022k) = 4(-k)(-k) = 4k2 (1)
Lại có (c- a)2 = (2022k - 2020k)2 = (2k)2 = 4k2 (2)
Từ (1)(2) => 4(a - b)(b - c) = (c - a)2 (đpcm)