Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\Rightarrow\hept{\begin{cases}a=2020k\\b=2021k\\c=2022k\end{cases}}\)
Khi đó M = 4(a - b)(b - c) - (c - a)2
= 4(2020k - 2021k)(2021k - 2022k) - (2022k - 2020k)2
= 4(-k)(-k) - (2k)2
= 4k2 - 4k2 = 0
Vậy M = 0
Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\)( \(k\ne0\))
\(\Rightarrow a=2020k\); \(b=2021k\); \(c=2022k\)
Thay a, b, c vào biểu thức M ta có:
\(M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
\(=4\left(2020k-2021k\right)\left(2021k-2022k\right)-\left(2022k-2020k\right)^2\)
\(=4.\left(-k\right).\left(-k\right)-\left(2k\right)^2=4k^2-4k^2=0\)
Vậy \(M=0\)
Lời giải:
Đặt \(\frac{a}{2016}=\frac{b}{2018}=\frac{c}{2020}=t\Rightarrow a=2016t; b=2018t; c=2020t\)
Khi đó:
\(\frac{(a-c)^2}{4}=\frac{(2016t-2020t)^2}{4}=\frac{16t^2}{4}=4t^2(1)\)
\((a-b)(b-c)=(2016t-2018t)(2018t-2020t)=(-2t)(-2t)=4t^2(2)\)
Từ \((1);(2)\Rightarrow \frac{(a-c)^2}{4}=(a-b)(b-c)\) (đpcm)
Đặng Quốc Huy:
\(\frac{(2016t-2020t)^2}{4}=\frac{(-4t)^2}{4}=\frac{(-4)^2.t^2}{4}=\frac{16t^2}{4}=4t^2\)
Áp dụng tính chất dãy tỉ số bằng nhau
Ta có:
a/b=b/c=c/d=a+b+c/b+c+d
=> (a+b+c/b+c+d)^3=a/b*b/c*c/d=a/d
=> DPCM
1.Gọi \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk\)
\(c=dk\)
Ta có
\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b.\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d.\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\frac{a}{a-b}=\frac{c}{c-d}\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\)
\(\frac{a}{c}=\frac{bk}{dk}=\frac{b}{d}\left(1\right)\)
\(\frac{a-b}{c-d}=\frac{bk-b}{dk-d}=\frac{b.\left(k-1\right)}{d.\left(k-1\right)}=\frac{b}{d}\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{c}=\frac{a-b}{a-c}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Các phần khác em cũng đặt = k và làm tương tự nha bây giờ ah đang vội nên không thể làm cho e đc sorry
Study well
Đặt \(\frac{a}{2008}=\frac{b}{2009}=\frac{c}{2010}=k\)
suy ra: \(a=2008k;\) \(b=2009k;\)\(c=2010k\)
Khi đó ta có: \(4\left(a-b\right)\left(b-c\right)\)
\(=4\left(2008k-2009k\right)\left(2009k-2010k\right)\)
\(=4k^2\)
\(\left(c-a\right)^2=\left(2010k-2008k\right)^2=4k^2\)
suy ra: \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)
p/s: tham khảo,