x^2-25=..... 16x^2+8x+1=...... 36x^2-36x+9=.......
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4x^2-9=\left(2x\right)^2-3^2=\left(2x-3\right)\left(2x+3\right)\)
b) \(16x^2-8x+1=\left(4x\right)^2-2.4x.1+1^2=\left(4x-1\right)^2\)
c) \(9x^2+6x+1=\left(3x\right)^2+2.3x.1+1^2=\left(3x+1\right)^2\)
d) \(36x^2+36x+9=\left(6x\right)^2+2.6x.3+3^2=\left(6x+3\right)^2\)
e) \(x^3+27=x^3+3^3=\left(x+3\right)\left(x^2-3x+9\right)\)
8x3+36x2+54x+27
tại x =-4
=>8×(-4)3+36×(-4)2+54×(-4)+27
=8×(-64)+36×16+54×(-4)+27
=-512+576-216+27
=-125
(4x-3)(16x2+12x+9)-x2(64x-4)
=4x(16x2+12x+9)- 3(16x2+12x+9)-x2(64x-4)
=(64x3+48x2+36x)-(48x2+36x+27)-(64x3-4x2)
=64x3+48x2+36x-48x2-36x-27-64x3+4x2
=(64x3-64x3)+(48x2-48x2+4x2)+(36x-36x)-27
=4x2-27
tại x=-1/4
=> 4×(-1/4)2-27
=4×1/16-27
=1/4-27
=-107/4
(ko bt cs đúng ko nx )
\(\Leftrightarrow8x^3-36x^2+51x-22+2x-3-\sqrt[3]{3x-5}=0\)
\(\Leftrightarrow8x^3-36x^2+51x-22+\dfrac{8x^3-36x^2+51x-22}{\left(2x-3\right)^2+\left(2x-3\right)\sqrt[3]{3x-5}+\sqrt[3]{\left(3x-5\right)^2}}=0\)
\(\Leftrightarrow\left(8x^3-36x^2+51x-22\right)\left(1+\dfrac{1}{\left(2x-3\right)^2+\left(2x-3\right)\sqrt[3]{3x-5}+\sqrt[3]{\left(3x-5\right)^2}}\right)=0\)
\(\Leftrightarrow8x^3-36x^2+51x-22=0\)
\(\Leftrightarrow\left(x-2\right)\left(8x^2-20x+11\right)=0\)
\(\Leftrightarrow...\)
a) ĐKXĐ : \(3\le x\le7\)
Ta có \(A=1.\sqrt{x-3}+1.\sqrt{7-x}\)
\(\le\sqrt{\left(1+1\right)\left(x-3+7-x\right)}=\sqrt{8}\)(BĐT Bunyacovski)
Dấu "=" xảy ra <=> \(\dfrac{1}{\sqrt{x-3}}=\dfrac{1}{\sqrt{7-x}}\Leftrightarrow x=5\)
\(\sqrt{81x^2}-8x=\sqrt{\left(9x\right)^2}-8x=\left|9x\right|-8x=9x-8x=x\) ( vì x > 0)
\(6.\sqrt{36x^2}-36x=6.\sqrt{\left(6x\right)^2}-36x=6.\left|6x\right|-36x=6.\left(-6x\right)-36x=-36x-36x=-72x\) (vì x < 0)
\(\Leftrightarrow\sqrt[3]{3x-5}=\left(2x-3\right)^3-x+2\)
\(\Leftrightarrow3x-5+\sqrt[3]{3x-5}=\left(2x-3\right)^3+2x-3\)
Đặt \(\left\{{}\begin{matrix}2x-3=a\\\sqrt[3]{3x-5}=b\end{matrix}\right.\)
\(\Rightarrow a^3+a=b^3+b\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+1\right]=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow2x-3=\sqrt[3]{3x-5}\)
\(\Leftrightarrow\left(2x-3\right)^3=3x-5\)
\(\Leftrightarrow8x^3-36x^2+51x-22=0\)
\(\Leftrightarrow\left(x-2\right)\left(8x^2-20x+11\right)=0\)
\(\Leftrightarrow...\)