Cho tam giác ABC vuông tại A, AH vuông góc với BC(H thuộc BC). Cho biết AB:AC=3:4 và BC=15cm. Tính độ dài các đoạn thẳng BH và HC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt AB = 3k; AC = 4k . Áp dụng hệ thức lượng vào tam giác vuông ABC thu được k = 3. Từ đó tính được : BH = 5,4cm, HC = 9,6cm
Ta có AB : AC = 3 : 4 ⇔ A B 3 = A C 4 ⇒ A B 2 9 = A C 2 16
= A B 2 + A C 2 9 + 16 = A B 2 + A C 2 25 = B C 2 25 = 225 25 = 9
(Vì theo định lý Py-ta-go ta có A B 2 + A C 2 = B C 2 ⇔ A B 2 + A C 2 = 225 )
Nên A B 2 9 = 9 ⇒ AB = 9; A C 2 9 = 9 ⇒ AC = 12
Theo hệ thức lượng trong tam giác vuông ABC ta có:
A B 2 = B H . B C ⇒ B H = A B 2 B C = 81 15 = 5 , 4
Vậy BH = 5,4
Đáp án cần chọn là: A
Ta có : \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)
Theo định lí Pytago tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow\left(\frac{3}{4}AC\right)^2+AC^2=225\Rightarrow AC=12\)cm
\(\Rightarrow AB=\frac{3}{4}AC=\frac{3}{4}.12=9\)cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thúc : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{81}{15}=\frac{27}{5}\)cm
\(\Rightarrow CH=BC-BH=15-\frac{27}{5}=\frac{48}{5}\)cm
B1: Gọi Tam giác ABC vuông tại A có AH là đ/cao chia cạnh huyền thành 2 đoạn HB và HC
AH2=HB x HC =3x4=12
AH=căn 12 r tính mấy cạnh kia đi
B2: Ta có AB/3=AC/4 suy ra AB = 3AC/4
Thế vào cong thức Pytago Tam giác ABC tính máy cái kia
a,Ta có : \(\dfrac{AB}{AC}=0,75\Rightarrow\dfrac{AB}{0,75}=AC\Rightarrow\dfrac{AB^2}{\dfrac{9}{16}}\:=AC^2\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{BA^2}{\dfrac{9}{16}}=AC^2=\dfrac{AB^2+AC^2}{\dfrac{9}{16}+1}=\dfrac{225}{\dfrac{25}{16}}=144\Rightarrow AB=9cm;AC=12cm\)
b, Ta có : \(S_{ABC}=\dfrac{1}{2}AB.AC;S_{ABC}=\dfrac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{108}{15}cm\)
a,Ta có: \(\dfrac{AB}{AC}=0,75=\dfrac{3}{4}\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{9}{16}\)
\(\Rightarrow\dfrac{AB^2}{9}=\dfrac{AC^2}{16}=\dfrac{AB^2+AC^2}{9+16}=\dfrac{BC^2}{25}=\dfrac{15^2}{25}=9\)
\(\Rightarrow AB^2=9.9=81\Leftrightarrow AB=9\left(cm\right);AC^2=9.16=144\Leftrightarrow AC=12\left(cm\right)\)
b, Ta có: \(S_{ABC}=\dfrac{1}{2}.AB.AC\)
Mà \(S_{ABC}=\dfrac{1}{2}.AH.BC\)
\(\Rightarrow AB.AC=AH.BC\Leftrightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)
\(\frac{AB}{AC}\)=\(\frac{3}{4}\)\(\Rightarrow\)\(\frac{AB}{3}\)=\(\frac{AC}{4}\)
AD tinh chay day ti so bang nhau ta co : \(\frac{AB}{3}\)=\(\frac{AC}{4}\)=\(\frac{AB+AC}{3+4}\)=\(\frac{BC}{7}\)=\(\frac{15}{7}\)
\(\Rightarrow\)AB=\(\frac{45}{7}\); AC=\(\frac{60}{7}\)
Xet \(\Delta ABC\) :
\(\Rightarrow AB^{2^{ }}\)=BH.BC \(\Rightarrow BH=\frac{135}{49}\)
Vi \(H\in BC\)\(\Rightarrow BH+HC=BC\)\(\Rightarrow CH=\frac{600}{49}\)