tìm GTNN của C=(x-1)-\(\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}\)
help me!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}\sqrt{2x+3}=a\left(a>0\right)\\\sqrt{y}=b\left(b\ge0\right)\end{cases}}\)
Thì ta có
\(\frac{b^2}{a^2}=\frac{a+1}{b+1}\)
\(\Leftrightarrow b^3+b^2=a^3+a^2\)
\(\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2\right)+\left(b-a\right)\left(b+a\right)=0\)
\(\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2+b+a\right)=0\)
Mà \(\left(b^2+ab+a^2+b+a\right)>0\)
\(\Rightarrow a=b\)
\(\Rightarrow2x+3=y\)
Thế vào Q ta được
\(Q=2x^2-5x-12=\left(2x^2-\frac{2x\times\sqrt{2}\times5}{2\sqrt{2}}+\frac{25}{8}\right)-\frac{121}{8}\)
\(=\left(\sqrt{2}x-\frac{5}{2\sqrt{2}}\right)^2-\frac{121}{8}\ge\frac{-121}{8}\)
ĐKXĐ: ...
Đặt \(\sqrt{2x-1}=t\ge0\Rightarrow x=\frac{t^2+1}{2}\)
\(\Rightarrow A=\frac{2t^2+6t+4}{t^2+4t+3}=\frac{2\left(t+1\right)\left(t+2\right)}{\left(t+1\right)\left(t+3\right)}=\frac{2\left(t+2\right)}{t+3}=2-\frac{2}{t+3}\ge2-\frac{2}{3}=\frac{4}{3}\)
Dấu "=" xảy ra khi \(t=0\Leftrightarrow x=\frac{1}{2}\)
\(\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{\sqrt{x}+1-4}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+1}-\frac{4}{\sqrt{x}+1}=1-\frac{4}{\sqrt{x+1}}\)
Để \(1-\frac{4}{\sqrt{x}+1}\) lớn nhất <=> \(\frac{4}{\sqrt{x}+1}\) lớn nhất => \(\sqrt{x}+1\)nhỏ nhất
Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\)
Dấu "=" xảy ra <=> \(\sqrt{x}=0\Rightarrow x=0\)
Vậy .........
đkxđ:x>=0
\(A^2=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x+1}\right)^2}=\frac{x-2\sqrt{x}+1}{x+1}=1-\frac{2\sqrt{x}}{x+1}\)
vì \(\left(\sqrt{x}-1\right)^2=x-2\sqrt{x}+1>=0\Rightarrow x+1>=2\sqrt{x}\)
\(\Rightarrow\frac{2\sqrt{x}}{x+1}< =\frac{x+1}{x+1}=1\Rightarrow1-\frac{2\sqrt{x}}{x+1}>=1-1=0\)
dấu = xảy ra khi x=1
vậy min A là 0 khi x-=1
ĐKXĐ: \(\hept{\begin{cases}x\ge0\\\sqrt{x}-2\ne0\end{cases}}\)<=>\(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
Ta có \(C=\left(x-1\right)-\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}\)
<=>\(C=\left(x-1\right)-\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}\)
<=>\(C=x-1-\left(2\sqrt{x}+1\right)\)
<=>\(C=x-2\sqrt{x}-2\)
<=>\(C=\left(\sqrt{x}-1\right)^2-3\ge-3\)
Vậy GTNN của C là -3. Dấu "=" xảy ra <=> x=1 (tm ĐKXĐ)