Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt 2x+3=a
\(y\sqrt{y}+y=a\sqrt{a}+a\)
=>\(\left(\sqrt{y}-\sqrt{a}\right)\left(y+\sqrt{ay}+a+\sqrt{a}+\sqrt{y}\right)=0\)
=>\(\sqrt{y}=\sqrt{a}\Rightarrow y=2x+3\)
thay vào Q tìm min là xong
Áp dụng bđt bu nhi a cốp xki :
\(\left(2x^2+y^2\right)\left(\left(\sqrt{2}\right)^2+\left(1\right)^2\right)\ge\left(\sqrt{2}.\sqrt{2}x+y.1\right)^2=\left(2x+y\right)^2\)
=> \(\sqrt{2x^2+y^2}\ge\frac{1}{\sqrt{3}}\left(2x+y\right)\) => \(\frac{\sqrt{2x^2+y^2}}{xy}\ge\frac{1}{\sqrt{3}}\cdot\frac{2x+y}{xy}=\frac{1}{\sqrt{3}}\left(\frac{2}{y}+\frac{1}{x}\right)\)
CM tương tự với hai cái còn lại
=> \(P\ge\frac{1}{\sqrt{3}}\left(\frac{3}{x}+\frac{3}{y}+\frac{3}{z}\right)=\frac{1}{\sqrt{3}}\cdot3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{\sqrt{3}}\cdot3\cdot\sqrt{3}=3\)
Dấu '' = '' xảy ra khi x = y =z = căn 3
b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz)
\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)
a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky)
\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)
\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)
Dấu "=" xảy ra <=> x = y = z = 2/3
1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2
= 4/9 .y.y.y . (3/2-3/2.y)^2
=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)
<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5
=4/9 . 243/3125
=108/3125
Đến đó tự giải
ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)
Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)
\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla
ĐKXĐ : x;y > 0
\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\)
\(\Leftrightarrow x+\sqrt{xy}=3\sqrt{xy}+15y\)
\(\Leftrightarrow x=2\sqrt{xy}+15y\)
\(\Leftrightarrow\left(x-2\sqrt{xy}+y\right)-16y=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2-\left(4\sqrt{y}\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{x}-5\sqrt{y}\right)\left(\sqrt{x}+3\sqrt{y}\right)=0\)
Mà theo đk x;y > 0 nên \(\sqrt{x}+3\sqrt{y}>0\) Do đó \(\sqrt{x}-5\sqrt{y}=0\Rightarrow\sqrt{x}=5\sqrt{y}\Rightarrow x=25y\)
Thay vào C ta được :
\(C=\frac{2.25y+\sqrt{25y.y}+3y}{25y+\sqrt{25y.y}-y}=\frac{50y+5y+3y}{25y+5y-y}=2\)
Đặt \(\hept{\begin{cases}\sqrt{2x+3}=a\left(a>0\right)\\\sqrt{y}=b\left(b\ge0\right)\end{cases}}\)
Thì ta có
\(\frac{b^2}{a^2}=\frac{a+1}{b+1}\)
\(\Leftrightarrow b^3+b^2=a^3+a^2\)
\(\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2\right)+\left(b-a\right)\left(b+a\right)=0\)
\(\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2+b+a\right)=0\)
Mà \(\left(b^2+ab+a^2+b+a\right)>0\)
\(\Rightarrow a=b\)
\(\Rightarrow2x+3=y\)
Thế vào Q ta được
\(Q=2x^2-5x-12=\left(2x^2-\frac{2x\times\sqrt{2}\times5}{2\sqrt{2}}+\frac{25}{8}\right)-\frac{121}{8}\)
\(=\left(\sqrt{2}x-\frac{5}{2\sqrt{2}}\right)^2-\frac{121}{8}\ge\frac{-121}{8}\)