K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2020

cái này mà là của lớp 3 à. Sao khó thế

cái này ít nhất cũng phải lớp 6 lớp 7

DD
8 tháng 1 2021

\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)

\(\Leftrightarrow\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1\)

\(\Leftrightarrow\frac{a+b+c+d}{a}=\frac{b+c+d+a}{b}=\frac{c+d+a+b}{c}=\frac{d+a+b+c}{d}\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\end{cases}}\).

\(\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\a=b=c=d\end{cases}}\)..

Nếu \(a=b=c=d\)\(P=4\).

Nếu \(a+b+c+d=0\)\(P=-1-1-1-1=-4\).

31 tháng 5 2017

Trừ 1 ở mỗi phân số ta đuợc :

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(=\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu : a+b+c+d\(\ne\)

=> a=b=c=d

=> \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)

Nếu a+b+c+d=0 

=> +) a+b=-(c+a)

+) b+c=-(d+a)

+) c+d=-(a+b)

+) d+a=-(b+c)

=> M=(-1)+(-1)+(-1)+(-1)=-4

5 tháng 7 2015

áp dụng t/ c dãy tỉ số = nhau ta có: \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}=5\)

\(\frac{2a+b+c+d}{a}=5\Rightarrow5a=2a+b+c+d\Leftrightarrow3a=b+c+d\Rightarrow a=\frac{b+c+d}{3}\)

\(\frac{a+2b+c+d}{b}=5\Rightarrow3b=a+c+d\Leftrightarrow3b=\frac{b+c+d}{3}+c+d\Leftrightarrow9b=b+c+d+3c+3d\Leftrightarrow8b=4c+4d\Leftrightarrow b=\frac{c+d}{2}\)

\(\Rightarrow a=\frac{\left(\frac{c+d}{2}+c+d\right)}{3}=\frac{3c+3d}{6}=\frac{c+d}{2}\Rightarrow a+b=\frac{2\left(c+d\right)}{2}=c+d\Rightarrow\frac{2c+2d+c+d}{\frac{c+d}{2}}=5\Leftrightarrow\frac{6\left(c+d\right)}{c+d}=5\Rightarrow6=5\)=> k tìm đc a,b,c,d thỏa mãn.

hoặc làm tiếp ta cũng có thể thấy:

\(\frac{a+b+2c+d}{c}=5\Rightarrow3c=a+b+d\Leftrightarrow3c-\frac{c+d}{2}-\frac{c+d}{2}-d=0\Leftrightarrow3c-c-d+d=0\Leftrightarrow2c=0\Leftrightarrow c=0\)

mà a,b,c,d điều kiện phải khác 0 => k có a,b,c,d thỏa mãn

 

5 tháng 7 2015

Ta có :   2a + b + c+ d / a - 1 = a + 2b + c + d / b - 1 = a + b + 2c + d / c - 1 = a + b + c +2d / d - 1

  => a + b + c + d / a =  a + b + c + d / b = a + b + c + d / c = a + b + c + d / d

Xét 2 trường hợp : 

TH1:   a + b + c + d = 0

=> a + b = - ( c + d )   ;   b + c = - ( a + d )   ;   c + d = - ( a + b )

Khi đó M = ( -1 ) . 4 = -4

TH2 :  a + b + c + d  khác 0 

=> a = b = c = d

Khi đó M = 1 . 4 = 4

Vậy M = 4 hoặc M = - 4

Do a,b,c,d > 0 nên \(b+c+d>0,c+d+a>0,d+a+b>0,a+b+c>0\)

Áp dụng BĐT AM - GM ta có :

\(\frac{a}{b+c+b}+\frac{b+c+d}{a}\ge2\sqrt{\frac{a}{b+c+d}.\frac{b+c+d}{a}}=2\)

Tương tự ta có được điều phải chứng minh

Khi đó \(P\ge2+2+2+2=8\)

ta có:

\(M+4=\left(\frac{a-d}{d+b}+1\right)+\left(\frac{d-b}{b+c}+1\right)+\left(\frac{b-c}{c+a}+1\right)+\left(\frac{c-a}{d+a}+1\right)\)

\(=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{c+a}+\frac{c+d}{d+a}\)

\(=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{c+a}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+b\right).\frac{4}{a+b+c+d}+\left(c+d\right).\frac{4}{a+b+c+d}\)

\(=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)

\(\Rightarrow M+4\ge4\Rightarrow M\ge0\)

vậy min M=0 khi a=b=c=d