Cho a,b,c,d là các số dương . Tìm GTNN của biểu thức :
\(M=\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}+\frac{b+c+d}{a}+\frac{c+d+a}{b}+\frac{d+a+b}{c}+\frac{a+b+c}{d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)
\(\Leftrightarrow\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1\)
\(\Leftrightarrow\frac{a+b+c+d}{a}=\frac{b+c+d+a}{b}=\frac{c+d+a+b}{c}=\frac{d+a+b+c}{d}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\end{cases}}\).
\(\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\a=b=c=d\end{cases}}\)..
Nếu \(a=b=c=d\): \(P=4\).
Nếu \(a+b+c+d=0\): \(P=-1-1-1-1=-4\).
Trừ 1 ở mỗi phân số ta đuợc :
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(=\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu : a+b+c+d\(\ne\)0
=> a=b=c=d
=> \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
Nếu a+b+c+d=0
=> +) a+b=-(c+a)
+) b+c=-(d+a)
+) c+d=-(a+b)
+) d+a=-(b+c)
=> M=(-1)+(-1)+(-1)+(-1)=-4
áp dụng t/ c dãy tỉ số = nhau ta có: \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}=5\)
\(\frac{2a+b+c+d}{a}=5\Rightarrow5a=2a+b+c+d\Leftrightarrow3a=b+c+d\Rightarrow a=\frac{b+c+d}{3}\)
\(\frac{a+2b+c+d}{b}=5\Rightarrow3b=a+c+d\Leftrightarrow3b=\frac{b+c+d}{3}+c+d\Leftrightarrow9b=b+c+d+3c+3d\Leftrightarrow8b=4c+4d\Leftrightarrow b=\frac{c+d}{2}\)
\(\Rightarrow a=\frac{\left(\frac{c+d}{2}+c+d\right)}{3}=\frac{3c+3d}{6}=\frac{c+d}{2}\Rightarrow a+b=\frac{2\left(c+d\right)}{2}=c+d\Rightarrow\frac{2c+2d+c+d}{\frac{c+d}{2}}=5\Leftrightarrow\frac{6\left(c+d\right)}{c+d}=5\Rightarrow6=5\)=> k tìm đc a,b,c,d thỏa mãn.
hoặc làm tiếp ta cũng có thể thấy:
\(\frac{a+b+2c+d}{c}=5\Rightarrow3c=a+b+d\Leftrightarrow3c-\frac{c+d}{2}-\frac{c+d}{2}-d=0\Leftrightarrow3c-c-d+d=0\Leftrightarrow2c=0\Leftrightarrow c=0\)
mà a,b,c,d điều kiện phải khác 0 => k có a,b,c,d thỏa mãn
Ta có : 2a + b + c+ d / a - 1 = a + 2b + c + d / b - 1 = a + b + 2c + d / c - 1 = a + b + c +2d / d - 1
=> a + b + c + d / a = a + b + c + d / b = a + b + c + d / c = a + b + c + d / d
Xét 2 trường hợp :
TH1: a + b + c + d = 0
=> a + b = - ( c + d ) ; b + c = - ( a + d ) ; c + d = - ( a + b )
Khi đó M = ( -1 ) . 4 = -4
TH2 : a + b + c + d khác 0
=> a = b = c = d
Khi đó M = 1 . 4 = 4
Vậy M = 4 hoặc M = - 4
Do a,b,c,d > 0 nên \(b+c+d>0,c+d+a>0,d+a+b>0,a+b+c>0\)
Áp dụng BĐT AM - GM ta có :
\(\frac{a}{b+c+b}+\frac{b+c+d}{a}\ge2\sqrt{\frac{a}{b+c+d}.\frac{b+c+d}{a}}=2\)
Tương tự ta có được điều phải chứng minh
Khi đó \(P\ge2+2+2+2=8\)
ta có:
\(M+4=\left(\frac{a-d}{d+b}+1\right)+\left(\frac{d-b}{b+c}+1\right)+\left(\frac{b-c}{c+a}+1\right)+\left(\frac{c-a}{d+a}+1\right)\)
\(=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{c+a}+\frac{c+d}{d+a}\)
\(=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{c+a}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+b\right).\frac{4}{a+b+c+d}+\left(c+d\right).\frac{4}{a+b+c+d}\)
\(=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)
\(\Rightarrow M+4\ge4\Rightarrow M\ge0\)
vậy min M=0 khi a=b=c=d
cái này mà là của lớp 3 à. Sao khó thế
cái này ít nhất cũng phải lớp 6 lớp 7