K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có:

\(M+4=\left(\frac{a-d}{d+b}+1\right)+\left(\frac{d-b}{b+c}+1\right)+\left(\frac{b-c}{c+a}+1\right)+\left(\frac{c-a}{d+a}+1\right)\)

\(=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{c+a}+\frac{c+d}{d+a}\)

\(=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{c+a}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+b\right).\frac{4}{a+b+c+d}+\left(c+d\right).\frac{4}{a+b+c+d}\)

\(=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)

\(\Rightarrow M+4\ge4\Rightarrow M\ge0\)

vậy min M=0 khi a=b=c=d

28 tháng 12 2015

a/b+c+d>a/a+b+c+d

b/a+c+d>b/a+b+c+d

c/a+b+d>c/a+b+c+d

d/a+b+c>d/a+b+c+d

mả  a+b+c+d/a+b+c+d=1

=>a/b+c+d+b/a+c+d+c/a+b+d+d/a+b+c> hoac =1

Vay...

11 tháng 11 2018

giỏi thì làm bài nÀY nèk

chứ mấy bác cứ đăng linh ta linh tinh lên online math

11 tháng 11 2018

Linh ta linh tinh gì. ko biết làm thì tôi mới nhờ mọi người chứ

đây là câu cuối bài khảo sat trg tôi. ko làm được thì đừng phát biểu linh tinh

Áp dụng bất đẳng thức \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)với \(x>0,y>0\)thì

\(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a^2+ad+bc+c^2}{\left(b+c\right)\left(a+d\right)}\ge\frac{4\left(a^2+ad+bc+c^2\right)}{\left(a+b+c+d\right)^2}\)\(\left(1\right)\)

Tương tự :\(\frac{b}{c+d}+\frac{d}{a+b}\ge\frac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\)\(\left(2\right)\)

Cộng\(\left(1\right)\)với \(\left(2\right)\)được

\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{a\left(a^2+b^2+c^2+d^2+ad+bc+ad+cd\right)}{\left(a+b+c+d\right)^2}=4B\)

Cần chứng minh \(B\ge\frac{1}{2}\), bất đẳng thức này tương dương với

\(2B\ge1\Leftrightarrow2\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)\ge\left(a+b+c+d\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2+d^2-2ac-2bd\ge0\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-b\right)^2\ge0\)(đúng)

Dấu "="xảy ra \(\Leftrightarrow\orbr{\begin{cases}a=c\\b=d\end{cases}}\)

23 tháng 9 2017

ta đặt \(A=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{ad+db}\)

Áp dụng bất đẳng thức svác sơ ta có 

\(A\ge\frac{\left(a+b+c+d\right)^2}{ab+bc+cd+da+2ac+2bd}\)

mặt khác ta có 

\(\left[\left(a+c\right)+\left(b+d\right)\right]^2=\left(a+c\right)^2+\left(b+d\right)^2+2\left(a+c\right)\left(b+d\right)\)

\(=a^2+c^2+b^2+d^2+2ac+2bd+2\left(ab+ad+bc+cd\right)=a^2+c^2+b^2+d^2+ab+ad+cb+cd+\left(2ac+2bd+ab+ad+cb+cd\right)\)

đến đây cậu dùng cô si ta có 

\(a^2+c^2\ge2ac;b^2+d^2\ge2bd\)

cộng vào ta sẽ ra điêu phải chứng minh

cách hơi cùi một chút nhưng chắc là vẫn được

2 tháng 8 2019

thôi ko cần nx đâu,mình làm được rồi,cảm ơn các bạn nha!!!

21 tháng 7 2020

Áp dụng bđt Cosi ta có: \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2;\frac{b^2}{b+c}+\frac{b+c}{4}\ge2;\frac{c^2}{c+d}+\frac{c+d}{4}\ge2\)\(;\frac{d^2}{d+a}+\frac{d+a}{4}\ge2\)

Cộng theo vế và a+b+c+d=1 ta có đpcm

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{a^2}{a+b}=\frac{a+b}{4};\frac{b^2}{b+c}=\frac{b+c}{4};\frac{c^2}{c+d}=\frac{c+d}{4};\frac{d^2}{d+a}=\frac{d+a}{4}\\\\a=b=c=1\end{cases}}\)

\(\Leftrightarrow a=b=c=d=\frac{1}{4}\)

21 tháng 7 2020

Bunyakovsky dạng phân thức

4 tháng 10 2017

nâng cao và phát triển toán 9 tập 1 :)

4 tháng 10 2017

bài thứ :  \(109\left(1\right)\)chuyên đề bất đẳng thức 

15 tháng 6 2017

Ẹt số xui đưa link cũng bị duyệt

Áp dụng BĐT AM-GM ta có: 

\(\frac{1}{d+1}=1-\frac{d}{d+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)

\(\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\). TƯơng tự cho 3 BĐT còn lại

\(\frac{1}{a+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{b+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{c+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\)

Nhân theo vế 4 BDT trên ta có: 

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\left(\frac{abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\right)^3}\)

\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge\frac{81abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)

Hay ta có ĐPCM