Các bạn làm giúp mik bài này với:
Đề: Cho S =\(\frac{1}{20}\)+\(\frac{1}{21}\)+\(\frac{1}{22}\)+...+\(\frac{1}{29}\). Hãy so sánh S với \(\frac{1}{3}\)
Thanks các bạn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 1/3=10/30
1/21+1/22+...+1/30 có 10 p/số
mà 1/21>1/30
1/22>1/30
....
1/29>1/30
1/30=1/30
=>1/21+..1/30>1/30+....1/30 có 10 phân số
=>1/21+...1/30>1/3
Ta thấy : \(\frac{1}{11}>\frac{1}{100},\frac{1}{12}>\frac{1}{100},...,\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{9}{10}+\frac{1}{10}=1\)
Do đó : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>1\)
ta có:A=\(\frac{-3}{2^2}.\frac{-8}{3^2}....\frac{-9999}{100^2}\)
A có 99 thừa số âm
=>A<0
\(=>-A=\frac{3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{99.101}{100.100}\)
=>\(-A=\frac{101}{100.2}=\frac{101}{200}>\frac{100}{200}=\frac{1}{2}=>-A>\frac{1}{2}=>A<-\frac{1}{2}\)
tick nhé
S = 1/21 + 1/22 + ... + 1/30
Số lượng số của S là :
( 30 - 21 ) : 1 + 1 = 10 ( số )
Ta có : 1/21 > 1/30 , 1/22 > 1/30 , ... 1/29 > 1/30 , 1/30 = 1/30
=> 1/21 + 1/22 + ...+ 1/30 ( 10 số ) > 1/30 + 1/30 + ...+ 1/30 ( 10 số )
=> S > 1/30 . 10
=> S > 1/3
Chúc bạn học giỏi !!!!
Ta có :
1/21 > 1/30
1/22 > 1/30
.........
1/29 > 1/30
=> S > 1/30 + 1/30 + ...... + 1/30 ( có 10 phân số 1/30 )
= 10/30 = 1/3
=>S > 1/3
Tk mk nha