Cho biểu thức A =1+19+93^2015+1993^2016 . Hỏi A có phải là số chính phương ko???
(Hình như A là số chính phương phải không các bạn , giải hộ mk vs)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(1+19^{19}+\left(93^2\right)^{99}.93+\left(1992^2\right)^{997}=1+\left(...9\right)+\left(..9\right).93+\left(..9\right)\)
\(=\left(...26\right)\)
Nếu là số chính phương có chữ số tận cùng là 6 thì hàng chục là số lẻ;
Ở đây ta thấy hàng chục là 2(số chẵn)
\(\Rightarrow\)\(1+19^{19}+93^{199}+1993^{1994}\)ko phải là số chính phương.
\(A=1+9^{19}+93^{199}+1993^{1994}\)
Ta có :
\(9\text{≡}0\left(mod3\right)\)
\(\Rightarrow9^{19}\text{≡}0\left(mod3\right)\)
\(93\text{≡}0\left(mod3\right)\)
\(\Rightarrow93^{199}\text{≡}0\left(mod3\right)\)
\(1993\text{≡}1\left(mod3\right)\)
\(\Rightarrow1993^{1994}\text{≡}1\left(mod3\right)\)
\(\Rightarrow A=1+9^{19}+93^{199}+1993^{1994}\text{≡}1+0+0+1\text{≡}2\left(mod3\right)\)
Một số nguyên có thể có dạng \(3k;3k+1\)hoặc \(3k+2\)
TH1 : \(\left(3k\right)^2=9k^2\text{≡}0\left(mod3\right)\)
TH2 : \(3k+1\text{≡}1\left(mod3\right)\)
\(\Rightarrow\left(3k+1\right)^2\text{≡}1\left(mod3\right)\)
TH3 : \(3k+2\text{≡}2\left(mod3\right)\)
\(\Rightarrow\left(3k+2\right)^2\text{≡}2^2\text{≡}1\left(mod3\right)\)
Do đó số chính phương nào cũng chia hết cho 3 hoặc chia 3 dư 1.
Mà \(A\text{≡}2\left(mod3\right)\)hay \(A\)chia 3 dư 2 nên A không phải số chính phương.
Vậy ...
a) Tính tổng các chữ số của A ta thấy:
1+2+3 chia hết cho 3
4+5+6 chia hết cho 3
...
97+98+99 chia hết cho 3
100 + 101 = 201 chia hết cho 3
A có tổng các chữ số chia hết cho 3 nên A chia hết cho 3 => A là hợp số.
b) Vẫn tính tổng của A, nhưng theo cách:
1+2+3+...+9 chia hết cho 9
11+12+13+...+19 chia hết cho 9
...
91+92+93+...+99 chia hết cho 9
10+20+30+...+90 chia hết cho 9
100+101 không chia hết cho 9
Nên A không chia hết cho 9.
A chia hết cho 3 nên A viết được dưới dạng: A = 3*B. Và B không chia hết cho 3 vì A không chia hết cho 9.
Nên A không phải là 1 số chính phương.
+ Chữ số 0 xuất hiện ở hàng đơn vị của các số: 10; 20; 30; ....; 100 gồm: (100 - 10) : 10 + 1 = 10 ( lần)
Chữ số 0 xuất hiện ở hàng chục của các số: 100 và 101 gồm 2 lần
=> có 10 + 2 = 12 ( chữ số 0) xuất hiện ở A
+ Chữ số 1 xuất hiện ở hàng đơn vị của các số: 1; 11; 21; ...; 101 gồm: (101 - 1) : 10 + 1 = 11 ( lần)
Chữ số 1 xuất hiện ở hàng chục của các số: 10; 11; 12; ...; 19 gồm: (19 - 10) : 1 + 1 = 10 ( lần)
Chữ số 1 xuất hiện ở hàng trăm của các số: 100 và 101 gồm 2 lần
=> có 11 + 10 + 2 = 23 ( chữ số 1) xuất hiện ở A
+ Chữ số 2 xuất hiện ở hàng đơn vị của các số: 2; 12; 22; ...; 92 gồm: (92 - 2) : 10 + 1 = 10 ( lần)
Chữ số 2 xuất hiện ở hàng chục của các số: 20; 21; 22; ...; 29 gồm: (29 - 20) : 1 + 1 = 10 ( lần)
=> có 10 + 10 = 20 ( chữ số 2) xuất hiện ở A
...
+ Chữ số 9 xuất hiện ở hàng đơn vị của các số: 9; 19; 29; ...; 99 gồm: (99 - 9) : 10 + 1 = 10 ( lần)
Chữ số 9 xuất hiện ở hàng chục của các số: 90; 91; 92; ...; 99 gồm: (99 - 90) : 1 + 1 = 10 ( lần)
=> có 10 + 10 = 20 ( chữ số 9) xuất hiện ở A
=> Tổng các chữ số của A là: 12×0 + 23×1 + 20×(2+3+...+9) = 903
a) Vì 903 chia hết cho 3
=> A chia hết cho 3
=> A là hợp số
b) Vì 903 chia hết cho 3 nhưng không chia hết cho 9
=> A chia hết cho 3 nhưng không chia hết cho 9
=> A không phải số chính phương
gọi tuổi Hải là ab.
theo bài ra ta có: ab.6=1ab
=>6.ab=100+ab
=>6.ab-ab=100
=>5.ab=100
=>ab=20
Vậy Hải 20 tuổi
Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1
Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.
Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.
a) Ta có: \(A=\dfrac{4}{n-1}\left(n\in Z\right)\)
Để biểu thức \(A\) là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)
Vậy \(n\ne1\) thì biểu thức \(A\) là phân số.
b) Ta có: \(\dfrac{4}{n-1}\left(n\in Z\right)\)
Để biểu thức \(A\) là số nguyên thì \(n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)
Vậy \(n\in\left\{2;0;3;-1;5;-3\right\}\) thì biểu thức \(A\) là số nguyên.
a: Để A là phân số thì n-1<>0
hay n<>1
b: Để A là số nguyên thì \(n-1\inƯ\left(4\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
Giả sử \(\sqrt{a}\) là số hữu tỉ thì \(\sqrt{a}\) viết được thành \(\sqrt{a}=\frac{m}{n}\) với m, n \(\in\) N, (n \(\ne\) 0) và ƯCLN (m, n) = 1
Do a không phải là số chính phương nên \(\frac{m}{n}\) không phải là số tự nhiên, do đó n > 1.
Ta có m2 = an2. Gọi p là một ước nguyên tố của n thì m2 \(⋮\)p, do đó m\(⋮\) p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1.
Vậy\(\sqrt{a}\) là số vô tỉ.