Tính :
a/ \(\left(\frac{-1}{3}\right)^7\cdot3^7\)
b/ \(\left(0,125\right)^3\cdot512\)
c/ \(\frac{90^2}{15^2}\)
d/ \(\frac{790^4}{79^4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) \(\frac{8^{14}}{4^{12}}\)
\(=\frac{\left(2^3\right)^{14}}{\left(2^2\right)^{12}}\)
\(=\frac{2^{42}}{2^{24}}\)
\(=2^{18}\)
\(=262144.\)
b) \(\left(-\frac{1}{3}\right)^7.3^7\)
\(=\left[\left(-\frac{1}{3}\right).3\right]^7\)
\(=\left(-1\right)^7\)
\(=-1.\)
c) \(\frac{90^2}{15^2}\)
\(=\left(\frac{90}{15}\right)^2\)
\(=6^2\)
\(=36.\)
d) \(\frac{790^4}{79^4}\)
\(=\left(\frac{790}{79}\right)^4\)
\(=10^4\)
\(=10000.\)
Chúc bạn học tốt!
Mk làm tiếp cho bạn Vũ Minh Tuấn nhé!
Bài 1:
\(-\frac{64}{343}=x^3\)
\(\Rightarrow x^3=\left(-\frac{4}{7}\right)^3\)
\(\Rightarrow x=-\frac{4}{7}\)
Vậy \(x=-\frac{4}{7}\)
\(\left(x+20\right)^{100}+\left|y+4\right|=0\)
Ta có: \(\left(x+20\right)^{100}\ge0;\left|y+4\right|\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x+20\right)^{100}=0\\\left|y+4\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-20\\y=-4\end{matrix}\right.\)
Vậy \(x=-20;y=-4\)
\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(\Rightarrow x-\frac{1}{2}=\frac{1}{3}\)
\(\Rightarrow x=\frac{5}{6}\)
Vậy \(x=\frac{5}{6}\)
\(\left(x+\frac{1}{2}\right)^2=\frac{4}{25}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\left(\frac{2}{5}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{2}=\frac{2}{5}\\x+\frac{1}{2}=-\frac{2}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{10}\\x=-\frac{9}{10}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{10};-\frac{9}{10}\right\}\)
a)
\(=-\frac{1}{2187}.2187\)
\(=-1\)
b)
\(=\frac{1}{512}.512\)
\(=1\)
c)
\(=\frac{8100}{225}=36\)
d) \(=10000\)
Em chỉ làm những bài e biết thôi, thông cảm nhs :D
a/ chịu
b/ \(C=1+7+7^2+.........+7^{50}\)
\(\Leftrightarrow7C=7+7^2+...........+7^{50}+7^{51}\)
\(\Leftrightarrow7C-C=\left(7+7^2+.......+7^{51}\right)-\left(1+7+.....+7^{50}\right)\)
\(\Leftrightarrow6C=7^{51}-1\)
\(\Leftrightarrow C=\dfrac{7^{51}-1}{6}\)
c/ \(A=\dfrac{-1}{4}+\dfrac{7}{3}+\dfrac{3}{4}+\dfrac{9}{2}\)
\(=\left(\dfrac{-1}{4}+\dfrac{3}{4}\right)+\left(\dfrac{7}{3}+\dfrac{9}{2}\right)\)
\(=\dfrac{1}{4}+\dfrac{41}{6}\)
\(=\dfrac{85}{12}\)
d/ Thấy phép tính hơi dài
e/ \(C=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+.........+\dfrac{1}{2015.2016.2017}\)
\(\Leftrightarrow2C=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+.........+\dfrac{2}{2015.2016.2017}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+.......+\dfrac{1}{2015.2016}-\dfrac{1}{2016.2017}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2016.2017}\)
\(=\dfrac{1}{2}-\dfrac{1}{4066272}\)
\(=\dfrac{2033136}{4066272}\)
\(\Leftrightarrow C=\dfrac{2033136}{4066272}:2\)
\(\Leftrightarrow C=?\)
\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)
\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)
\(A=7.\frac{13}{28}\)
\(A=\frac{13}{4}\)