Bài 6 : Cho đường thẳng \(\Delta\) có phương trình 5x + 3y -5 = 0
a , Tính khoảng cách điểm A ( -1 , 3 ) đến đường thẳng \(\Delta\)
b , Tính khoảng cách giữa 2 đường thẳng song song \(\Delta,\Delta\)' : 5x + 3y = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Gọi \(M\left(x;y\right)\in d\)
\(\Rightarrow d\left(M;\Delta\right)=3\Leftrightarrow\dfrac{\left|3x-4y+6\right|}{\sqrt{3^2+4^2}}=3\)
\(\Leftrightarrow\left|3x-4y+6\right|=15\Rightarrow\left[{}\begin{matrix}3x-4y+21=0\\3x-4y-9=0\end{matrix}\right.\)
b.
Giả sử đường thẳng (d2) có dạng \(a\left(x+2\right)+b\left(y-3\right)=0\Leftrightarrow ax+by+2a-3b=0\) (1)
\(\dfrac{\left|3.a-4b\right|}{5\sqrt{a^2+b^2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow2\left(3a-4b\right)^2=25a^2+25b^2\)
\(\Leftrightarrow7a^2+48ab-7b^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7a=b\\a=-7b\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;7\right);\left(7;-1\right)\)
\(\Rightarrow...\) (bạn tự thế vào (1) và rút gọn)
Lời giải:
Vì PTĐT cần tìm song song với $(\Delta)$ nên nó có dạng:
$3x-4y+m=0$
Khoảng cách từ $M$ đến đt cần tìm là:
$\frac{|3.2-4.(-2)+m|}{\sqrt{3^2+4^2}}=2$
$\Leftrightarrow |m+14|=10$
$\Rightarrow m=-4$ hoặc $m=-24$
Vậy PTĐT cần tìm là: $3x-4y-4=0$ hoặc $3x-4y-24=0$
Lấy \(A\left(2;2\right)\) là 1 điểm thuộc \(\Delta_1\)
\(d\left(\Delta_1;\Delta_2\right)=d\left(A;\Delta_2\right)=\dfrac{\left|5.2-7.2+6\right|}{\sqrt{5^2+\left(-7\right)^2}}=\dfrac{\sqrt{74}}{37}\)
a: Khi x=-2 thì (y+2)^2=25-(-2-1)^2=25-9=16
=>y=2 hoặc y=-6
TH1: A(-2;2)
I(1;-2)
vecto IA=(-3;4)
Phương trình Δ là:
-3(x-1)+4(y+2)=0
=>-3x+3+4y+8=0
=>-3x+4y+11=0
TH2: A(-2;-6); I(1;-2)
vecto IA=(-3;-4)=(3;4)
Phương trình IA là:
3(x+2)+4(y+6)=0
=>3x+6+4y+24=0
=>3x+4y+30=0
b: Δ//12x+5y+6=0
=>Δ: 12x+5y+c=0
d(I;Δ)=5
=>\(\dfrac{\left|12\cdot1+5\cdot\left(-2\right)+c\right|}{\sqrt{12^2+5^2}}=5\)
=>|c+2|=5*13=65
=>c=63 hoặc c=-67
Ta có: \(\Delta//d\Rightarrow\Delta:2x-3y+c=0\left(c\ne-1\right)\)
\(A\left(1;2\right)\in\Delta:2\cdot1-3\cdot2+c=0\)
\(\Leftrightarrow c=4\)
Vậy: \(\Delta:2x-3y+4=0\)
Vì (Δ)//d nên Δ: 2x-3y+c=0
Thay x=1 và y=2 vào Δ, ta được:
c+2-6=0
=>c=4