Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Gọi \(M\left(x;y\right)\in d\)
\(\Rightarrow d\left(M;\Delta\right)=3\Leftrightarrow\dfrac{\left|3x-4y+6\right|}{\sqrt{3^2+4^2}}=3\)
\(\Leftrightarrow\left|3x-4y+6\right|=15\Rightarrow\left[{}\begin{matrix}3x-4y+21=0\\3x-4y-9=0\end{matrix}\right.\)
b.
Giả sử đường thẳng (d2) có dạng \(a\left(x+2\right)+b\left(y-3\right)=0\Leftrightarrow ax+by+2a-3b=0\) (1)
\(\dfrac{\left|3.a-4b\right|}{5\sqrt{a^2+b^2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow2\left(3a-4b\right)^2=25a^2+25b^2\)
\(\Leftrightarrow7a^2+48ab-7b^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7a=b\\a=-7b\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;7\right);\left(7;-1\right)\)
\(\Rightarrow...\) (bạn tự thế vào (1) và rút gọn)
Giả sử đường thẳng ∆ song song với d : 3x- 4y+2= 0
Khi đó ; ∆ có phương trình là ∆ : 3x-4y +C= 0.
Lấy điểm M( -2 ; -1) thuộc d.
Do đó ; 2 đường thẳng thỏa mãn là:3x – 4y + 7 = 0 và 3x – 4y – 3 = 0
Chọn B
a.
\(\overrightarrow{AB}=\left(1;2\right)\Rightarrow\) đường thẳng AB nhận (2;-1) là 1 vtpt
Phương trình AB:
\(2\left(x-1\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-5=0\)
b.
d vuông góc \(\Delta\Rightarrow d\) nhận (4;-3) là 1 vtpt
Phương trình d có dạng: \(4x-3y+c=0\)
\(d\left(B;d\right)=\dfrac{\left|4.2-3.\left(-1\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{2}{5}\)
\(\Leftrightarrow\left|c+11\right|=2\Rightarrow\left[{}\begin{matrix}c=-9\\c=-13\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}4x-3y-13=0\\4x-3y-9=0\end{matrix}\right.\)
a: Vì Δ//d nên Δ: 3x-4y+c=0
Thay x=1 và y=4 vào Δ, ta được:
c+3-16=0
=>c=13
b: Vì Δ vuông góc d nên Δ: 4x+3y+c=0
Thay x=-3 và y=-5 vào Δ, ta được:
c+4*(-3)+3(-5)=0
=>c-27=0
=>c=27
=>4x+3y+27=0
Đường thẳng song song d nên nhận (3;-4) là 1 vtpt
Phương trình:
\(3\left(x-2\right)-4\left(y-1\right)=0\Leftrightarrow3x-4y-2=0\)
a/ Do d1 vuông góc \(\Delta\) nên d1 nhận \(\left(4;3\right)\) là 1 vtpt
Phương trình d1:
\(4\left(x-3\right)+3\left(y-1\right)=0\Leftrightarrow4x+3y-15=0\)
b/ Do d2 song song \(\Delta\) nên pt d2 có dạng: \(3x-4y+c=0\)
Áp dụng công thức khoảng cách ta có:
\(\frac{\left|3.2-4\left(-1\right)+c\right|}{\sqrt{3^2+4^2}}=1\)
\(\Leftrightarrow\left|c+10\right|=5\Rightarrow\left[{}\begin{matrix}c=-5\\c=-15\end{matrix}\right.\)
Phương trình d2: \(\left[{}\begin{matrix}3x-4y-5=0\\3x-4y-15=0\end{matrix}\right.\)
Lời giải:
Vì PTĐT cần tìm song song với $(\Delta)$ nên nó có dạng:
$3x-4y+m=0$
Khoảng cách từ $M$ đến đt cần tìm là:
$\frac{|3.2-4.(-2)+m|}{\sqrt{3^2+4^2}}=2$
$\Leftrightarrow |m+14|=10$
$\Rightarrow m=-4$ hoặc $m=-24$
Vậy PTĐT cần tìm là: $3x-4y-4=0$ hoặc $3x-4y-24=0$