cho điều kiện để A= 4/n-1 (n thuộc Z)
a) Số nguyên n phải có điều kiện gì để A là phân số
b) Tìm các giá trị của n để A là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)n∈Z,n≠2
b)để A là số nguyên thì 2-n∈{1;-1}
*)2-n=1
n=1
*)2-n=-1
n=3
a, đk n khác 1
b, \(\Rightarrow n-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n - 1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 2 | 0 | 3 | -1 | 5 | -3 |
Ta có: \(A=-\dfrac{4}{n-1}\)
a) Để \(A\) là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)
b) Để \(A\in Z\) thì \(n-1\inƯ\left(-4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)
a)Để A là phân số \(\Leftrightarrow n+4\ne0\Leftrightarrow n\ne-4.\)
b) A= \(\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=3-\frac{17}{n+4}.\)
A nhận giá trị nguyên <=>\(\frac{17}{n+4}nguyên\)
\(\Rightarrow n+4\inƯ\left(17\right)=\hept{\begin{cases}\\\end{cases}1;-1;17;-17}.\)
\(\Rightarrow n=-3;-5;13;-21\)
học tốt
Ta có: \(A=\dfrac{4}{n-3}\left(n\in Z\right)\)
a) Để \(A\) là phân số thì \(n-3\ne0\Leftrightarrow n\ne3\)
b) Để \(A\in Z\Rightarrow\left(n-3\right)\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\in\left\{4;3;5;1;7;-1\right\}\)
Vậy \(n\in\left\{4;3;5;1;7;-1\right\}\) thì \(A\in Z\)
a: Để A là phân số thì n-3<>0
hay n<>3
b: Để A là số nguyên thì \(n-3\inƯ\left(4\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{4;2;5;1;7;-1\right\}\)
a. Điều kiện để M là phân số là: số tận cùng của \(n\ne4;9\)
b.Điều kiênj để M là một số nguyên là:
\(5⋮n+1\) hay \(n+1\in U\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n=\left\{-2;4;-6\right\}\) ( vì \(n+1\ne0\)
a) Số nguyên n phải có điều kiện sau để M là phân số là:
\(n+1\ne0;5;-5\)
\(n\ne0\)
\(n\ne-1\)
\(n\ne4\)
\(n\ne-6\)
Như vậy, n không thuộc các số nguyên trên và n các tất cả các số nguyên còn lại.
Với điều kiện như thế, M sẽ là phân số.
b) Số nguyên n phải có điều sau để M là số nguyên là:
\(5 ⋮ n+1\) thì M sẽ là số nguyên \(\left(n\inℤ\right)\), hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
\(n+1\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
\(n\) | \(-6\) | \(-2\) | \(0\) | \(4\) |
ĐCĐK | TM | TM | TM | TM |
Vậy \(n=\left\{-6;-2;0;4\right\}\)
a) HS tự làm.
b) HS tự làm.
c) Phân số A có giá trị là số nguyên khi (n + 5):(n + 4) Từ đó suy ra l ⋮ (n + 4) hay n + 4 là ước của 1.
Do đó n ∈ (-5; -3).
1) Để A là phân số thì 4 phải chia hết cho n-1
Suy ra n-1 thuộc ước của 4
Vậy n phải có điều kiên là ước của 4 cộng 1
2) Ước của 4 là : -1;-2;-4;1;2;4
Để A là số nguyên thì n-1 phải là số nguyên và bằng 1;2;4
n = 2;3;5
a, Để A là phân số thì n-1\(\ne\) 0
=> n\(\ne\) 1
b, Có : \(A=\frac{4}{n-1}\)
Để A có giá trị nguyên => n-1 \(\in\) Ư(4) = {1;2;4;-1;-2;-4}
Ta có bảng sau
-3
vậy để A là số nguyên thì n \(\in\) {2;3;5;0;-1;-3}