Bài 2. Tìm giá trị của m, biết rằng một trong hai phương trình sau đây nhận x = –1 làm nghiệm, phương trình còn lại nhận x = 5 làm nghiệm:
(1– x)(x2 + 1) = 0 và (2x2 + 7)(8 – mx) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = 5 vào vế trái của phương trình 2x = 10, ta thấy giá trị của hai vế bằng nhau. Vậy x = 5 là nghiệm của phương trình 2x = 10.
Khi đó x = -1 là nghiệm của phương trình 3 – kx = 2.
Thay x = -1 vào phương trình 3 – kx = 2, ta có:
k(-1) = 2
⇔ 3 + k = 2 ⇔ k = - 1
Vậy k = -1
Ta thấy: \(2x=10\Leftrightarrow x=5\) vậy pt còn lại có nghiệm là x = - 1 thế vào ta được
\(3-k\left(-1\right)=2\Leftrightarrow k=-1\)
Thay x = 5 vào vế trái của phương trình 2x = 10, ta thấy giá trị của hai vế bằng nhau. Vậy x = 5 là nghiệm của phương trình 2x = 10.
Khi đó x = -1 là nghiệm của phương trình 3 – kx = 2.
Thay x = -1 vào phương trình 3 – kx = 2, ta có:
3 – k(-1) = 2 ⇔ 3 + k = 2 ⇔ k = -1
Vậy k = -1.
a) Thay x=0 vào phương trình, ta được:
\(4\cdot0^2-2\cdot\left(2m+3\right)\cdot0+m+1=0\)
\(\Leftrightarrow m+1=0\)
hay m=-1
Áp dụng hệ thức Vi-et, ta có:
\(x_1+x_2=\dfrac{2\left(2m+3\right)}{4}\)
\(\Leftrightarrow x_1=\dfrac{2\cdot\left(-2+3\right)}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)
Vậy: Khi m=-1 và nghiệm còn lại là \(x=\dfrac{1}{2}\)
a: Thay x=5 vào pt, ta được:
25-5m-m-1=0
=>24-6m=0
hay m=4
b: \(\text{Δ}=\left(-m\right)^2-4\left(-m-1\right)\)
\(=m^2+4m+4=\left(m+2\right)^2\)
Để phương trình có hai nghiệm phân biệt thì m+2<>0
hay m<>-2
d: Để phương trình có hai nghiệm cùng dấu thì \(\left\{{}\begin{matrix}m>0\\-m-1>0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)