K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

Ta có: ΔA'B'C'\(\sim\)ΔABC(gt)

\(\frac{A'B'}{AB}=\frac{A'C'}{AC}=\frac{B'C'}{BC}=k\)

hay \(\frac{A'B'}{8}=\frac{A'C'}{6}=\frac{B'C'}{10}\)

⇔B'C'>A'B'>A'C'

hay B'C' là cạnh lớn nhất trong ΔA'B'C'

mà độ dài cạnh lớn nhất là 25cm

nên B'C'=25cm

\(\frac{A'B'}{8}=\frac{A'C'}{6}=\frac{25}{10}\)

\(\Leftrightarrow\left\{{}\begin{matrix}A'B'=\frac{8\cdot25}{10}=\frac{200}{10}=20cm\\A'C'=\frac{25\cdot6}{10}=\frac{150}{10}=15cm\end{matrix}\right.\)

Vậy: A'B'=20cm; A'C'=15cm

Bài 2:

Ta có: ΔABC\(\sim\)ΔDEF với tỉ số đồng dạng \(k=\frac{3}{5}\)

\(\frac{C_{ABC}}{C_{DEF}}=\frac{3}{5}\)

hay \(C_{DEF}=\frac{5\cdot12}{3}=\frac{60}{3}=20cm\)

Vậy: Chu vi của ΔDEF là 20cm

5 tháng 5 2020

cảm ơn bạn

4 tháng 2 2017

Ta có: Δ ABC ∼ Δ A'B'C'

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án D.

27 tháng 8 2018

Ta có: Δ ABC đồng dạng Δ A'B'C'

Bài tập: Khái niệm hai tam giác đồng dạng | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Khái niệm hai tam giác đồng dạng | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án D.

Bài 2: 

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

c: \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)

16 tháng 2 2022

Ta có:

\(AB^2+AC^2=8^2+6^2=64+36=100\left(cm\right)\)

\(BC^2=10^2=100\left(cm\right)\)

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A (định lý Pi-ta-go đảo)

Áp dụng định lý Pytago đảo  ta có:

AB2+AC2=82+62=100

mà 102=100

⇒82+62=102hay AB2+AC2=BC2

vậy ABC là tam giác vuông tại A

1) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

2) Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

8 tháng 2 2021

em cảm ơn ạ

 

9 tháng 3 2022

Xét \(\Delta ABC:\)

\(BC^2=10^2=100.\\ AB^2+AC^2=6^2+8^2=100.\\ \Rightarrow BC^2=AB^2+AC^2.\)

\(\Rightarrow\Delta ABC\) vuông tại A (Pytago đảo).

4 tháng 2 2017

Định lí đảo Py-ta-go:

Trong một tam giác có tổng bình phương của hai cạnh bằng bình phương cạnh còn lại thì tam giác đó là tam giác vuông.

Xét tam giác ABC, ta có: AB2 + BC2 = 62 + 82 = 100

                             và     AC2 = 102 = 100

=> tam giác ABC là tam giác vuông tại B.

4 tháng 2 2017

I can!!!!!!!

2 tháng 2 2021

câu a là chứng minh goc BAC nhé

13 tháng 2 2022

TK
 

Trắc nghiệm Tính chất đường phân giác của tam giác có đáp án

Vậy AB = 4cm, BC = 8cm, AC = 6cm

Đáp án cần chọn là: C

13 tháng 2 2022

C