Cho đường tròn tâm O, bán kính R với dây cung BC cố định. Điểm A thuộc cũng lớn BC. ĐƯờng phân giác của \(\widehat{BAC}\)cắt (O) tại D. Các tiếp tuyến của (O;R) tại C và D cắt nhau tại E. Tia CD cắt AB ở K , đường thẳng AD cắt CE ở I
a) Chứng minh BC // DE
b) Chứng minh AKIC là tứ giác nội tiếp
c)Cho BC= R\(\sqrt{3}\)tính theo R độ dài cung nhỏ BC của (O;R)
Mọi người giúp em với ạ :(((
mình không vẽ hình nha
a) vì AD là tia phân giác \(\widehat{BAC}\)
\(\Rightarrow\widehat{BAD}=\widehat{DAC}\)\(\Rightarrow\)D là điểm chính giữa BC
\(\Rightarrow OD\perp BC\)
Mà \(DE\perp OD\)
\(\Rightarrow BC//DE\)
b) Ta có : \(\widehat{DAC}=\widehat{DCI}=\frac{1}{2}sđ\widebat{CD}\)
\(\Rightarrow\widehat{KAD}=\widehat{KCI}\)
suy ra tứ giác ACIK nội tiếp
c) OD cắt BC tại H
Dễ thấy H là trung điểm BC nên HC = \(\frac{BC}{2}=\frac{\sqrt{3}}{2}R\)
Xét \(\Delta OHC\)vuông tại H có :
\(HC=OC.\sin\widehat{HOC}\Rightarrow\sin\widehat{HOC}=\frac{HC}{OC}=\frac{\frac{\sqrt{3}}{2}R}{R}=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\widehat{HOC}=60^o\)
\(\Rightarrow\widehat{BOC}=120^o\)
\(\Rightarrow\widebat{BC}=120^o\)
P/s : câu cuối là tính số đo cung nhỏ BC mà sao có cái theo R. mình ko hiểu. thôi thì bạn cứ xem đi nha.