K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 4 2020

a. Tọa độ A thỏa mãn:

\(4-3t+2\left(-1+2t\right)-1=0\Rightarrow t=-1\)

\(\Rightarrow A\left(7;-3\right)\)

b. d1 nhận \(\left(-3;2\right)=-1\left(3;-2\right)\) là 1 vtcp nên đường thẳng d nhận \(\left(2;3\right)\) là 1 vtcp và \(\left(3;-2\right)\) là 1 vtpt

Phương trình tham số d: \(\left\{{}\begin{matrix}x=7+2t\\y=-3+3t\end{matrix}\right.\)

Pt tổng quát:

\(3\left(x-7\right)-2\left(y+3\right)=0\Leftrightarrow3x-2y-27=0\)

Đường thẳng d2 nhận \(\left(1;2\right)\) là 1 vtpt nên d3 nhận \(\left(1;2\right)\) là 1 vtpt và \(\left(2;-1\right)\) là 1 vtcp

Phương trình tham số d3: \(\left\{{}\begin{matrix}x=7+2t\\y=-3-t\end{matrix}\right.\)

Pt tổng quát:

\(1\left(x-7\right)+2\left(y+3\right)=0\Leftrightarrow x+2y-1=0\)

a: Δ có vtcp là (2;-1) và đi qua A(1;-3)

=>VTPT là (1;2)

PTTQ là:

1(x-1)+2(y+3)=0

=>x-1+2y+6=0

=>x+2y+5=0

b: Vì d vuông góc Δ nên d: 2x-y+c=0

Tọa độ giao của d1 và d2 là:

x+2y=8 và x-2y=0

=>x=4 và y=2

Thay x=4 và y=2 vào 2x-y+c=0, ta được

c+2*4-2=0

=>c=-2

13 tháng 3 2019

a. Md1= (2;1)

Md2 = (-1;3)

b. Gọi d là đường thẳng đi qua M

- Viết PTTS của d ⊥ d1:

Ta có:

M(2;1)

Do d1⊥ d nên VTCP ud1 = (-3;-1) --> VTPT nd = (-1;3)

--> VTCP ud = (3;1)

Vậy PTTS của d:

\(\left\{{}\begin{matrix}x=2+3t\\y=1+t\end{matrix}\right.\)

- Viết PTTQ của d ⊥ d1:

Ta có:

M(2;1)

Do d1 ⊥ d nên VTCP ud1 = (-3;-1) --> VTPT nd = (-1;3)

Vậy PTTQ của d:

-1(x - 2) + 3(y - 1) = 0

<=> -x + 2 + 3y - 3 = 0

<=> -x + 3y - 1 = 0

- Viết PTTS của d ⊥ d2:

Ta có:

M(-1;3)

Do d ⊥ d2 nên VTCP ud2 = (-2;-1) --> VTPT ud = (-1;2)

--> VTCP ud = (2;1)

Vậy PTTS của d:

\(\left\{{}\begin{matrix}x=-1+2t\\y=3+t\end{matrix}\right.\)

Viết PTTQ của d ⊥ d2:

M(-1;3)

Do d ⊥ d2 nên VTCP ud2 = (-2;-1) --> VTPT ud = (-1;2)

Vậy PTTQ của d:

-1(x + 1) + 2(y - 3) = 0

<=> -x - 1 + 2y - 6 = 0

<=> -x + 2y - 7 = 0

Chọn A

8 tháng 4 2021

làm giúp tớ với tó đang cần gấp

 

8 tháng 4 2021

chỉ những câu đánh dấu thôi ạ

 

1: (d): x=-2-2t và y=1+2t nên (d) có VTCP là (-2;2)=(-1;1) và đi qua B(-2;1)

=>(d') có VTPT là (-1;1)

Phương trình (d') là;

-1(x-3)+1(y-1)=0

=>-x+3+y-1=0

=>-x+y+2=0

2: (d) có VTCP là (-1;1)

=>VTPT là (1;1)

Phương trình (d) là:

1(x+2)+1(y-1)=0

=>x+y+1=0

Tọa độ H là;

x+y+1=0 và -x+y+2=0

=>x=1/2 và y=-3/2

 

30 tháng 10 2021

1, PT hoành độ giao điểm: \(2x+4=-x+1\Leftrightarrow x=-1\Leftrightarrow y=0\)

\(\Leftrightarrow A\left(-1;0\right)\)

Vậy \(A\left(-1;0\right)\) là tọa độ giao điểm 2 đths

2, Đt cần tìm //(d1)\(\Leftrightarrow a=2;b\ne4\)

Đt cần tìm đi qua M(-1;3) nên \(-a+b=3\Leftrightarrow-2+b=3\Leftrightarrow b=5\left(tm\right)\)

Vậy đths là \(y=2x+5\)

3, PT giao điểm d1 với trục hoành là \(y=0\Leftrightarrow2x+4=0\Leftrightarrow x=-2\Leftrightarrow B\left(-2;0\right)\)

PT giao điểm d2 với trục hoành là \(y=0\Leftrightarrow-x+1=0\Leftrightarrow x=1\Leftrightarrow C\left(1;0\right)\)

Do đó \(BC=\left|-2\right|+\left|1\right|=3;OA=\left|-1\right|=1\)

Vậy \(S_{ABC}=\dfrac{1}{2}OA\cdot BC=\dfrac{3}{2}\left(đvdt\right)\)

30 tháng 10 2021

Bài I (3,0 điểm)  Cho hai biểu thức A= x9 và B= 3 + 2 +x5 x3 với x 0,x 9. 

                                                                                                  x−3                   x−3        x+3           x−9

1)     Khi x=81, tính giá trị của biểu thức A.

2)     Rút gọn biểu thức B.

3)     Tìm x để A = 5.

4)     Với x 9, tìm giá trị nhỏ nhất của biểu thức P AB= .

giải giúp nốt cho minh luon nhe

16 tháng 12 2021

a: tọa độ giao điểm M là:

\(\left\{{}\begin{matrix}2x-1=-x+2\\y=2x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

8 tháng 10 2019

BÀI 1

để d1 và d2 // thì: m-3=-1(1) ; m khác 3 (2)

 ta có: (1) <=> m=2 (3)

từ (2) và (3) => để d1//d2 thì m = 2