cho hình bình hành ABCD, tia phân giác của góc D cắt Ab ở E .tia phân giác của góc B cắt Dc ở F
a/ chừng minh:DE//BF
b/chứng minh tứ giác DEBF là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có A E D ^ = E D C ^ v à A B F ^ = E D C ^ ⇒ D E / / B F (có góc ở vị trí đồng vị bằng nhau).
b) Từ câu a) suy ra DEBF là hình bình hành.
a) Ta có:
+ ABCD là hình bình hành ⇒ AB // CD ⇒ (Hai góc đồng vị) (1)
+ DE là tia phân giác của góc D
Mà hai góc này ở vị trí đồng vị ⇒ DE // BF (đpcm)
b) Tứ giác DEBF có:
DE // BF (chứng minh ở câu a)
BE // DF (vì AB // CD)
⇒ DEBF là hình bình hành.
Xét ΔADE và ΔCBF có
\(\widehat{ADE}=\widehat{CBF}\)
AD=CB
\(\widehat{A}=\widehat{C}\)
Do đó: ΔADE=ΔCBF
Suy ra: AE=CF và DE=BF
Ta có: AE+BE+AB
CF+FD=CD
mà AB=CD
và AE=CF
nên BE=FD
Xét tứ giác BEDF có
BE=DF
DE=BF
Do đó: BEDF là hình bình hành
Suy ra: DE//BF