Tính:
\((1-\frac{1}{5}).(1-\frac{2}{5}).(1-\frac{3}{5})...(1-\frac{9}{5})\)
Help me!!!! T^T
Hứa sẽ cho tick(trình bày đầy đủ hộ mk)
Thanks trước
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{4}+\frac{1}{3}:\left(2x-1\right)=-5\)
\(\frac{1}{3}:\left(2x-1\right)=-5-\frac{1}{4}\)
\(\frac{1}{3}:\left(2x-1\right)=-\frac{20}{4}-\frac{1}{4}\)
\(\frac{1}{3}:\left(2x-1\right)=-\frac{21}{4}\)
\(\left(2x-1\right)=\frac{1}{3}:-\frac{21}{4}\)
\(\left(2x-1\right)=\frac{1}{3}.-\frac{4}{21}\)
\(\left(2x-1\right)=-\frac{4}{63}\)
2x= -4/63 + 1
2x = 59/63
x = 59/63 : 2
x = 59/126
1/3:(2.x-1)=-5-1/4
1/3:(2.x-1)=-21/4
2.x-1=1/3:-21/4
2.x-1=-4/63
2.x=-4/63+1
2.x=\(3\frac{59}{63}\)
x=\(3\frac{59}{63}\):2
x=\(1\frac{61}{63}\)
Ta có:
\(4\left(1+5+5^2+...+5^9\right)=5\left(1+5+5^2+...+5^9\right)-\left(1+5+5^2+...+5^9\right)\)
\(=5+5^2+5^3+...+5^{10}-1-5-5^2-...-5^9\)
\(=5^{10}-1+\left(5-5\right)+\left(5^2-5^5\right)+..+\left(5^9-5^9\right)\)
\(=5^{10}-1\)
=> \(1+5+5^2+...+5^9=\frac{5^{10}-1}{4}\)
Tương tự: \(1+5+5^2+...+5^8=\frac{5^9-1}{4}\)
\(1+3+3^2+...+3^9=\frac{3^{10}-1}{2}\)
\(1+3+3^2+...+3^8=\frac{3^9-1}{2}\)
=> \(A=\frac{5^{10}-1}{5^9-1}>\frac{5^{10}-1}{5^9}=5-\frac{1}{5^9}>4;\)
\(B=\frac{3^{10}-1}{3^9-1}< \frac{3^{10}}{3^9-1}=3+\frac{3}{3^9-1}< 4;\)
=> A > B.
\(=\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{64}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}=\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)+\left(-\frac{3}{4}-\frac{2}{9}-\frac{1}{36}\right)+\frac{1}{64}\)
= 1 + -1 + 1/64
= 0 +1/64
= 1/64
Bài giải
Ta có : \(\frac{21}{11}+\frac{19}{30}+\frac{11}{36}=\frac{3780}{1980}+\frac{1254}{1980}+\frac{605}{1980}=\frac{5639}{1980}< \frac{5940}{1980}=3\left(đpcm\right)\)
ờm,... Xin lỗi bạn nha ,cách của mình có thô sơ tí ,hihihihi ,xin lỗi bạn nhiều !!!
#)Giải :
Đặt \(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(A=\frac{1}{5}-\frac{1}{10}\)
\(A=\frac{1}{10}\)
Bài làm
Ta có: \(\left(1-\frac{1}{5}\right)\left(1-\frac{2}{5}\right)\left(1-\frac{3}{5}\right)...\left(1-\frac{9}{5}\right)\)
\(=\left(\frac{5}{5}-\frac{1}{5}\right)\left(\frac{5}{5}-\frac{2}{5}\right)\left(\frac{5}{5}-\frac{3}{5}\right)\left(\frac{5}{5}-\frac{4}{5}\right)\left(\frac{5}{5}-\frac{5}{5}\right)...\left(\frac{5}{5}-\frac{9}{5}\right)\)
\(=\frac{4}{5}.\frac{3}{5}.\frac{2}{5}.\frac{1}{5}.0...\frac{-4}{5}\)
Mà trong một dãy phép nhân có một số là 0 thì tích của nó là 0
\(\Rightarrow\frac{4}{5}.\frac{3}{5}.\frac{2}{5}.\frac{1}{5}.0...\frac{-4}{5}=0\)
Vậy biệt thức trên có giá trị bằng 0