K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

Bạn tính được \(\widehat{HMC}=30^0\)

Tam giác MHC vuông tại H (gt) có: \(\widehat{HMC}=30^0\) nên HC = 1/2 MC

E là trung điểm của BM (gt) \(\Rightarrow EB=EM=\frac{1}{2}BM\)

AM là đường trung tuyến (gt) nên M là trung điểm của BC và MB = MC

Từ 3 điêu trên, ta được HC = EB = EM . (1)

Bạn chứng minh được \(\Delta AEB=\Delta BHC\left(c.g.c\right)\Rightarrow AE=BH\) (2)

Từ (1) và (2) \(\Rightarrow AE.EM=BH.HC\left(đpcm\right)\) 

Chúc bạn học tốt.

3. Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH,MK lần lượt vuông góc với AB và AC (H thuộc AB và K thuộc AC).a. Chứng minh tứ giác AKMH là hình chữ nhật.b. Chứng minh tứ giác BHKM là hình bình hành.c. Gọi E là trung điểm của MH, gọi F là trung điểm của MK. Đường thẳng HK cắt AE,AF lần lượt tại I và J. Chứng minh HI = KJ.d. Gọi G là trọng tâm tam giác ABC. Giả sử tam giác ABG vuông tại G và AB = 4 √ 3 (cm)....
Đọc tiếp

3. Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH,MK lần lượt vuông góc với AB và AC (H thuộc AB và K thuộc AC).

a. Chứng minh tứ giác AKMH là hình chữ nhật.

b. Chứng minh tứ giác BHKM là hình bình hành.

c. Gọi E là trung điểm của MH, gọi F là trung điểm của MK. Đường thẳng HK cắt AE,AF lần lượt tại I và J. Chứng minh HI = KJ.

d. Gọi G là trọng tâm tam giác ABC. Giả sử tam giác ABG vuông tại G và AB = 4 √ 3 (cm). Tính độ dài EF.

4. Cho tam giác ABC vuông tại A , đường cao AH . Gọi D là điểm đối xứng với H qua AB,Elà điểm đối xứng với H qua AC . Gọi I là giao điểm của AB và DH, K là giao điểm của AC và EH .

a. Tứ giác AIHK là hình gì? Vì sao?

b. Chứng minh ba điểm D,E,A thẳng hàng.

c. Gọi M là trung điểm của BC. Chứng minh AM vuông góc IK. 

1
11 tháng 12 2021

a: Xét tứ giác AKMH có 

\(\widehat{AKM}=\widehat{AHM}=\widehat{HAK}=90^0\)

Do đó: AKMH là hình chữ nhật

31 tháng 8 2018

Em tham khảo bài 2 tại link dưới đây nhé.

Câu hỏi của Nguyễn Chí Thành - Toán lớp 8 - Học toán với OnlineMath

7 tháng 11 2017

Dùng hình của bạn Ngọc nhé

a) \(\Delta ABC\)đều có \(\widehat{BAC}=60^0;\)đường cao AD cũng là phân giác và trực tâm H cũng là trọng tâm

I là trung điểm của cạnh huyền chung AM của các tam giác vuông \(\Delta AEM,\Delta AFM,\Delta ADM\)nên \(IA=IE=ID=IF=\frac{AM}{2}\)(1)

\(\widehat{EIM}\)là góc ngoài của \(\Delta AIE\)cân tại I nên \(\widehat{EIM}=2\widehat{BAM}\). Tương tự, \(\widehat{MID}=2\widehat{MAD};\widehat{MIF}=2\widehat{MAC}\)

\(\widehat{EID}=\widehat{EIM}+\widehat{MID}=2\left(\widehat{BAM}+\widehat{MAD}\right)=2\widehat{BAD}=\widehat{BAC}=60^0\)

\(\widehat{EIF}=\widehat{EIM}+\widehat{MIF}=2\left(\widehat{BAM}+\widehat{MAC}\right)=2.60^0=120^0\)

\(\Rightarrow\widehat{DIF}=120^0-60^0=60^0\)

\(\Delta EDI\)cân tại I có \(\widehat{EID}=60^0\)nên là tam giác đều, suy ra EI = ED (2)

\(\Delta FDI\)cân tại I có \(\widehat{DIF}=60^0\)nên là tam giác đều, suy ra FI = FD (3)

(1),(2),(3) => IE = ED = DF = IF => DEIF là hình thoi

b) Gọi P là trung điểm AH thì \(AP=PH=\frac{AH}{2}=HD\)

Cho ID cắt EF tại K thì K là trung điểm ID (tính chất hình thoi ABCD)

\(\Delta AMH\)có IP là đường trung bình nên IP // MH (4)

\(\Delta DPI\)có KH là đường trung bình nên IP // KH (5)

(4),(5) => M,K,H thẳng hàng. Vậy MH, ID, EF đồng quy tại K

17 tháng 11 2016

A B C D E F H I M O

a) Xét ΔMNH vuông tại H và ΔNQP vuông tại P có 

\(\widehat{MNH}=\widehat{NQP}\)(hai góc so le trong, MN//QP)

Do đó: ΔMNH\(\sim\)ΔNQP(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNQ vuông tại M có MH là đường cao ứng với cạnh huyền NQ, ta được:

\(NH\cdot NQ=MN^2\)