Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tính được \(\widehat{HMC}=30^0\)
Tam giác MHC vuông tại H (gt) có: \(\widehat{HMC}=30^0\) nên HC = 1/2 MC
E là trung điểm của BM (gt) \(\Rightarrow EB=EM=\frac{1}{2}BM\)
AM là đường trung tuyến (gt) nên M là trung điểm của BC và MB = MC
Từ 3 điêu trên, ta được HC = EB = EM . (1)
Bạn chứng minh được \(\Delta AEB=\Delta BHC\left(c.g.c\right)\Rightarrow AE=BH\) (2)
Từ (1) và (2) \(\Rightarrow AE.EM=BH.HC\left(đpcm\right)\)
Chúc bạn học tốt.
Bạn tự vẽ hình nhé hình này rất dễ thôi :v
a)Xét tam giác cân ABC có:AM là trung tuyến
`=>` AM là đường cao
`=>AM bot BC`
Xét tam giác ABM và tam giác ACM có:
`AM` chung
`hat{AMB}=hat{AMC}=90^o(CMT)`
`BM=MC`(do m là trung điểm)
`=>Delta ABM=Delta ACM(cgc)`
`b)` Xét tam giác vuông BHM và tam giác vuông CKM ta có:
`BM=CM`(M là trung điểm)
`hat{ABC}=hat{ACB}`(do tam giác ABC cân)
`=>Delta BHM=Delta CKM`(ch-gn)
`=>BH=CK`
a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\)
Do đó: ΔAHB\(\sim\)ΔCHA
b: BM/AN=HB/HA
mà HB/HA=AB/CA
nên BM/AN=AB/CA
Xét ΔABM và ΔCAN có
BM/AN=AB/CA
\(\widehat{ABM}=\widehat{CAN}\)
Do đó: ΔABM\(\sim\)ΔCAN