Tìm các stn a,b,c thoả: 2001a+2004b+2007c= 20152016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sở x,y là các số nguyên thỏa mãn pt : \(5x+3y=15\) (1)
Ta thấy 15 và 3y đều chia hết cho 3 nên 5x cũng chia hết cho 3. do đó x chia hết cho 3 (vì 5 và 3 là nguyên tố cùng nhau)
đặt : \(x=3t\) (t là số nguyên) , Thay vào (1) ta được : \(5\times3t+3y=15\) \(\Leftrightarrow5t+y=5\) \(\Leftrightarrow y=5-5t\) do đó \(\begin{cases}x=3t\\y=5-5t\end{cases}\) với t ϵ Z
Đảo lại thay các biểu thức của x và y vào (1) được nghiệm đúng, vậy (1) có vô số (x ; y) nguyên được biểu thị bởi công thức : \(\begin{cases}x=3t\\y=5-5t\end{cases}\) với ( t ϵ Z )
Ta có 5x+3y=15
5x=15-3y
Vì 15\(⋮\)3;3y\(⋮\)3=>5x\(⋮\)3
Mà ƯCLN(5;3)=1 Nên x\(⋮\)3
=>x có dạng 3k(kEN)
=>5*3k+3y=15
=>15k+3y=15
=>3y=15-15k
=>3y=15*(1-k)
=>y=15*(1-k):3
=>y=5*(1-k)
=>y=5-5k
Để y EN thì 5-5k phải EN
=>5k<10
=>k<2
=>k=1 hoặc k=0
Nếu k=1=>x=3*1=>x=3
y=5-5*1
y=0
Nếu k=0=>x=3*0=>x=0
y=5-5*0
y=5
Vậy x=5 thì y=0
x=0 thì y=5