Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(b^2=a.c\) vào biểu thức
\(\frac{a^2+a.c}{a.c+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)
Ta có:
\(b^2=ac\)
\(\Leftrightarrow\frac{a}{b}=\frac{b}{c}\)
\(\Leftrightarrow\frac{a}{b}=\frac{2014b}{2014c}\)
\(\Leftrightarrow\frac{a}{b}=\frac{2014b}{2014c}=\frac{a+2014b}{b+2014c}=\left(\frac{a+2014b}{b+2014c}\right)^2\) (1)
Ta lại có:
\(\frac{a}{b}=\frac{b}{c}\)
\(\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{ab}{bc}=\frac{a}{c}\) (2)
Từ (1) và (2)
=> đpcm
+ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
+ \(\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\) \(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)
+ \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\Rightarrow\frac{a\cdot b}{c\cdot d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
\(\Rightarrow\frac{a}{b}\cdot\frac{a}{b}=\frac{a^2+c^2}{b^2+d^2}\Rightarrow\frac{a\cdot c}{b\cdot d}=\frac{a^2+c^2}{b^2+d^2}\)
câu cuối lm tương tự
Ta có: \(b^2=a.c\Rightarrow\frac{a}{b}=\frac{b}{c}\)
Đặt \(\frac{a}{b}=\frac{b}{c}=k\left(k\in R\right)\)
\(\Rightarrow a=b.k\); \(b=c.k\)
\(\frac{a}{c}=\frac{a.c}{c.c}=\frac{b^2}{c^2}\left(1\right)\)
\(\frac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}=\frac{\left(b.k+2007b\right)^2}{\left(c.k+2007c\right)^2}=\frac{\left[b\left(k+2007\right)\right]^2}{\left[c.\left(k+2007\right)\right]^2}=\frac{b^2.\left(k+2007\right)^2}{c^2.\left(k+2007\right)^2}=\frac{b^2}{c^2}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\frac{a}{c}=\frac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}\) \(\left(đpcm\right)\)