Cho m,n là 2 số nguyên.Chứng minh rằng nếu 7(m+n)2+2mn chia hết cho 225 thì mn cũng chia hết cho 225
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho m,n là 2 số nguyên.Chứng minh rằng nếu 7(m+n)2+2mn chia hết cho 225 thì mn cũng chia hết cho 225
225=152
=> \(2\left[7\left(m+n\right)^2+2mn\right]⋮15^{^2}\)
\(\Leftrightarrow14\left(m+n\right)^2+4mn⋮15^2\)
\(\Leftrightarrow14\left(m+n\right)^2+\left[\left(m+n\right)^2-\left(m-n\right)^2\right]⋮15^2\)
\(\Leftrightarrow15\left(m+n\right)^2-\left(m-n\right)^2⋮15^2\)
Vì \(15\left(m+n\right)^2⋮15\Rightarrow\left(m-n\right)^2⋮15\)
\(\Rightarrow\left\{{}\begin{matrix}\left(m-n\right)^2⋮3\\\left(m-n\right)^2⋮5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m-n⋮3\\m-n⋮5\end{matrix}\right.\)
mà (3,5)=1 => (m-n)\(⋮\)15
=> (m-n)2\(⋮\)152
Tương tự 15(m+n)2\(⋮\)152
=> mn \(⋮\)225
**** m chia hết cho 3 => m^2 chia hết cho 3 ( m^2 = m.m )
Tt: n^2 chia hết cho 3
=> m^2 + n^2 chia hết cho 3
**** định lí đảo
m^2 + n^2 chia hết cho 3
Xét: a chia 3 có 3 trườg hợp số dư: 0;1;2 => a^2 có 2 trườg hợp số dư là 0;1 < cm: đặt a = 3k + x với x là các trườg hợp số dư. sau đó tìm được số dư khi bình phương a >
=> m^2 và n^2 cũng có các khả năng số dư đó khi chia cho 3
Xét các trườg hợp:
m^2 và n^2 chia 3 cùng dư 1 => m^2 + n^2 chia 3 dư 2 => loại
m^2 và n^2 1 số chia 3 dư 0 và 1 số chia 3 dư 1 => m^2 + n^2 chia 3 dư 1 => loại
=> m^2 và n^2 cùng chia hết cho 3
hay m và n cùng chia hết cho 3
Nếu có một số chia hết cho 7 thì số đó nhân lên bao nhiêu cũng chia hết cho 7
Mà m2=m.m; n2=n.n nên m và n cũng chia hết cho 7
Vậy m và n chia hết cho 7
Bài làm:
a, Ta có: 98⋮7⇒98a⋮798⋮7⇒98a⋮7. Mà 100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7
⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7
Mặt khác 7a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮77a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮7 (đpcm)
Vậy...
b, Ta có: 3a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮113a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮11
Mà 11(a+b)⋮11⇒11a+11b⋮1111(a+b)⋮11⇒11a+11b⋮11
⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11
⇒a+5b⋮11⇒a+5b⋮11 (đpcm)
Vậy...
Để chứng minh rằng m và n là hai số lẻ và nguyên tố cùng nhau, ta cần thực hiện các bước sau đây:
Bước 1: Giả sử rằng m và n là hai số tự nhiên thỏa mãn m^2 - 2020n^2 + 2022 chia hết cho mn.
Bước 2: Ta sẽ chứng minh rằng m và n là hai số lẻ.
Giả sử rằng m là số chẵn, tức là m = 2k với k là một số tự nhiên. Thay thế vào biểu thức ban đầu, ta có:
(2k)^2 - 2020n^2 + 2022 chia hết cho 2kn
Simplifying the equation, we get:
4k^2 - 2020n^2 + 2022 chia hết cho 2kn
Dividing both sides by 2, we have:
2k^2 - 1010n^2 + 1011 chia hết cho kn
Do 2k^2 chia hết cho kn, vì vậy 2k^2 cũng chia hết cho kn. Từ đó, 1011 chia hết cho kn.
Bởi vì 1011 là một số lẻ, để 1011 chia hết cho kn, thì kn cũng phải là một số lẻ. Vì vậy, n cũng phải là số lẻ.
Do đó, giả sử m là số chẵn là không hợp lệ. Vậy m phải là số lẻ.
Bước 3: Chứng minh rằng m và n là hai số nguyên tố cùng nhau.
Giả sử rằng m và n không phải là hai số nguyên tố cùng nhau. Điều đó có nghĩa là tồn tại một số nguyên tố p chia hết cả m và n.
Vì m là số lẻ, n là số lẻ và p là số nguyên tố chia hết cả m và n, vì vậy p không thể chia hết cho 2.
Ta biểu diễn m^2 - 2020n^2 + 2022 dưới dạng phân tích nhân tử:
m^2 - 2020n^2 + 2022 = (m - n√2020)(m + n√2020)
Vì p chia hết cả m và n, p cũng phải chia hết cho (m - n√2020) và (m + n√2020).
Tuy nhiên, ta thấy rằng (m - n√2020) và (m + n√2020) không thể cùng chia hết cho số nguyên tố p, vì chúng có dạng khác nhau (một dạng có căn bậc hai và một dạng không có căn bậc hai).
Điều này dẫn đến mâu thuẫn, do đó giả sử ban đầu là sai.
Vậy ta có kết luận rằng m và n là hai số tự nhiên lẻ và nguyên tố cùng nhau.
**** m chia hết cho 3 => m^2 chia hết cho 3 ( m^2 = m.m )
Tt: n^2 chia hết cho 3
=> m^2 + n^2 chia hết cho 3
**** định lí đảo
m^2 + n^2 chia hết cho 3
Xét: a chia 3 có 3 trườg hợp số dư: 0;1;2 => a^2 có 2 trườg hợp số dư là 0;1 < cm: đặt a = 3k + x với x là các trườg hợp số dư. sau đó tìm được số dư khi bình phương a >
=> m^2 và n^2 cũng có các khả năng số dư đó khi chia cho 3
Xét các trườg hợp:
m^2 và n^2 chia 3 cùng dư 1 => m^2 + n^2 chia 3 dư 2 => loại
m^2 và n^2 1 số chia 3 dư 0 và 1 số chia 3 dư 1 => m^2 + n^2 chia 3 dư 1 => loại
=> m^2 và n^2 cùng chia hết cho 3
hay m và n cùng chia hết cho 3
ko bt đúng ko nữa hehe
Chứng minh m^2+n^2 chia hết 3 khi m,n chia hết 3
Ta có: m^2+n^2= m^2-n^2 + 2n^2
=(m-n)(m+n) + 2n^2
Ta có: m,n chia hết cho 3 nên (m-n)(m+n) chia hết cho 3
Và: n chia hết cho 3 nên 2n^2 chia hết cho 3
Từ 2 điều trên suy ra: (m-n)(M+n) + 2n^2 chia hết 3
Vậy m,n chia hết cho 3 thì m^2+n^2 chia hết cho 3
Đúng thì t.i.c.k đúng đi bn
225=15 mũ 2
=> 2 [ 7 (m+n)2 +2mn] chia hết cho 15 mũ 2
=>14 + mn2 +4mn chia hết cho 15 mũ 2
=>14 (m+n)2 +[(m+n)2 -(m-n)2] chia hết cho 15 mũ 2
=>15(m+n)2 - (M-n)2 chia hết cho 15 mũ 2
vì 15(m+n)2 chia hết cho 15 mũ 2 => 15(m-n)2 chia hết cho 15 mũ 2
=>{m-n)2 chia hết cho 3 <=>{ m - n chia hết cho 3
{(m-n)2 chia hết cho 5 <=> m-n chia hết cho 5
mà 3,5 =1=> m-n chia hết cho 15
=>(m-n)2 chia hết cho 15 mũ 2
tương tự (m+n)2 chia hết cho 15 mũ 2
=> mn chia hết cho 225