chứng minh \(2^2+2^3+2^4+...+2^{60}\)\(^0\) chia hết cho 3
tính từng bước nhanh nhất là mik tích cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh \(2^2+2^3+2^4+...+2^{60}\)\(^0\) chia hết cho 3
tính từng bước nhanh nhất là mik tích cho
Bài làm:
a) \(a^2-a=a\left(a-1\right)\)
Vì a là số nguyên
=> a ; a-1 là 2 số nguyên liên tiếp
Vì trong 2 số nguyên liên tiếp tồn tại 1 số chẵn ( chia hết cho 2)
=> a(a-1) chia hết cho 2
=> \(a^2-a⋮2\)
Sai sai nên sửa đề:
b) \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\)
Vì đó là tích 3 số nguyên liên tiếp và trong 3 số đó luôn tồn tại 1 số chia hết cho 3
=> (a-1)a(a+1) chia hết cho 3
=> \(a^3-a⋮3\)
c) \(a^5-a=a\left(a^2-1\right)\left(a^2+1\right)=\left(a-1\right)a\left(a+1\right)\left[\left(a^2-4\right)+5\right]\)
\(=\left(a-1\right)a\left(a+1\right)\left[\left(a-2\right)\left(a+2\right)+5\right]\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)\)
Vì (a-2)(a-1)a(a+1)(a+2) là tích 5 số nguyên liên tiếp và trong 5 số đó luôn tồn tại 1 số chia hết cho 5
=> (a-2)(a-1)a(a+1)(a+2) chia hết cho 5
Mà 5(a-1)a(a+1) chia hết cho 5
=> \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
+) Ta có a2 - a = a( a - 1 )
Vì a , a - 1 là hai số nguyên liên tiếp => Ít nhất 1 trong 2 số chia hết cho 2
=> a( a - 1 ) chia hết cho 2 hay a2 - a chia hết cho 2 ( đpcm )
+) Ta có a3 - a = a( a2 - 1 ) = a( a - 1 )( a + 1 ) ( sửa 3 thành a may ra tính được )
Vì a ; a - 1 ; a + 1 là 3 số nguyên liên tiếp => Ít nhất 1 trong 3 số chia hết cho 3
=> a( a - 1 )( a + 1 ) chia hết cho 3 hay a3 - a chia hết cho 3 ( đpcm )
2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29
= (2 + 22 + 23) + (24 +25 + 26) +(27 + 28 + 29)
= (2 + 22 + 23) + 23(2 + 22 + 23) + 26(2 + 22 + 23)
= 14 + 23.14 + 26.14
= 14(1 + 23 + 26) chia hết cho 7 (ĐPCM)
1) 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 97 - 98 - 99 + 100 ( có 100 số; 100 chia hết cho 4)
= (1 - 2 - 3 + 4) + (5 - 6 - 7 + 8) + ... + (97 - 98 - 99 + 100)
= 0 + 0 + ... + 0
= 0
2) Gọi 2 số chẵn liên tiếp là 2k và 2k + 2 (k thuộc Z)
Ta có:
2k.(2k + 2)
= 2k.2.(k + 1)
= 4.k.(k + 1)
Vì k.(k + 1) là tích 2 số tự nhiên liên tiếp nên k.(k + 1) chia hết cho 2
=> 4.k.(k + 1) chia hết cho 8
=> đpcm
Chú ý: nếu bn chưa học tập hợp Z thì có thể sửa thành tập hợp N
1.1-2-3+4+5-6-7+8+...+97-98-99+100
=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
=0.50
=0
2.VD : 2 số chẵn là 2 ; 4
2 x 4 = 8 chia hết cho 8 nên tích 2 số chẵn liên tiếp chia hết cho 8
Chứng minh tổng 2 số lẻ chia hết cho 2 .
Ta gọi 2 số lẻ là 2k + 1 và 2q + 1.
=> tổng của 2 số lẻ là :
2k + 1 + 2q + 1 = 2(k + q) + 2
= 2(k + p + 2) chia hết cho 2.
Vậy...
Còn chứng minh 3 số liên tiếp chia hết cho 3 bạn gọi các số là 3k + 1 , 3k + 2 , 3k + 3 rồi tự nghĩ nha.
a) 2+22+23+24+25+26+27+28+29+210
= (2+22)+(23+24)+(25+26)+(27+28)+(29+210)
= 2(1+2)+23(1+2)+25(1+2)+27(1+2)+29(1+2)
= 2.3+23.3+25.3+27.3+29.3
= 3(2+23+25+27+29) chia hết cho 3
b) (n+3)(n+6)
TH1: nếu n là số chẵn thì ta luôn có n+6 cũng là 1 số chẵn (chẵn +chẵn = chẵn) nên chia hết cho 2
suy ra tích : (n+3)(n+6) chia hết cho 2 vì có 1 thừa số chia hết cho 2
TH2: nếu n là số lẻ thì ta luôn có n+3 cũng là 1 số chẵn (lẻ + lẻ = chẵn) nên chia hết cho 2
suy ra tích : (n+3)(n+6) chia hết cho 2 vì có 1 thừa số chia hết cho 2