Bài 1 Cho đường thẳng d có phương trình tổng quát 2x - 3y + 4 = 0 .
Tìm điểm M thuộc đường thẳng d và cách điểm A(0;1) một khoảng bằng 5
Bài 2 Tìm bán kính của đường tròn tâm C(-2;-2) tiếp xúc với đường thẳng ∆ : 5x+12y-10=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a
đường thẳng (d') là đường thẳng cần tìm
d' // d nên d' có dạng x-y +c = 0 với c khác 0
lấy điểm bất kì thuộc (d) là O(0,0) lấy đối xứng O qua M ta được O' ( 4, 2) vậy O' thuộc (d')
4−2+c=0⇒c=−2⇒(d′):x−y−2=0
Câu b
Viết pt đường thẳng (a) qua M và vuông góc với (d)
(a) cắt (d) tại đâu ta được hình chiếu H của M
a: (d): 2x-y+3=0
=>y=2x+3
Vì (d') vuông góc với (d) nên 2a=-1
=>a=-1/2
Vậy: (d'): y=-1/2x+b
Thay x=3 và y=1 vào (d'), ta được:
b-3/2=1
hay b=5/2
Vậy: (d'): y=-1/2x+5/2
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x+3=-\dfrac{1}{2}x+\dfrac{5}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=-\dfrac{1}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=-\dfrac{2}{5}+3=\dfrac{13}{5}\end{matrix}\right.\)
Đề bài đúng là Cho phương trình (d) có pt tổng quát : 2x-y+3=0 và điểm M( 3,1)
a: (d): 2x-y+3=0
=>y=2x+3
Vì (d') vuông góc với (d) nên 2a=-1
=>a=-1/2
Vậy: (d'): y=-1/2x+b
Thay x=3 và y=1 vào (d'), ta được:
b-3/2=1
hay b=5/2
Vậy: (d'): y=-1/2x+5/2
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x+3=-\dfrac{1}{2}x+\dfrac{5}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=-\dfrac{1}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=-\dfrac{2}{5}+3=\dfrac{13}{5}\end{matrix}\right.\)
a: (d): 2x-y+3=0
=>y=2x+3
Vì (d') vuông góc với (d) nên 2a=-1
=>a=-1/2
Vậy: (d'): y=-1/2x+b
Thay x=3 và y=1 vào (d'), ta được:
b-3/2=1
hay b=5/2
Vậy: (d'): y=-1/2x+5/2
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x+3=-\dfrac{1}{2}x+\dfrac{5}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=-\dfrac{1}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=-\dfrac{2}{5}+3=\dfrac{13}{5}\end{matrix}\right.\)
M ∈ d nên M có tọa độ: M(2 + 2t; 3 + t).
Khi đó : AM2 = (xM – xA)2 + (yM – yA)2 = (2+2t)2 + (2 + t)2 = 5t2 + 12t + 8.
Ta có : AM = 5 ⇔ AM2 = 25
⇔ 5t2 + 12t + 8 = 25
⇔ 5t2 + 12t – 17 = 0
⇔ t = 1 hoặc t = –17/5.
+ Với t = 1 thì M(4 ; 4).
+ Với t = –17/5 thì M(–24/5 ; –2/5).
Vậy có hai điểm M thỏa mãn là M(4 ; 4) và M(–24/5 ; –2/5).
Bạn thay vào vecto AM à? Mình tưởng phải thay vào điểm M chứ.
Bài 1:
Do M thuộc d nên tọa độ M có dạng \(M\left(a;\frac{2a+4}{3}\right)\)
\(\Rightarrow\overrightarrow{AM}=\left(a;\frac{2a+1}{3}\right)\)
Mà \(AM=5\Leftrightarrow a^2+\left(\frac{2a+1}{3}\right)^2=25\)
\(\Leftrightarrow13a^2+4a-224=0\Rightarrow\left[{}\begin{matrix}a=4\\a=-\frac{56}{13}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}M\left(4;\frac{9}{3}\right)\\M\left(-\frac{56}{13};-\frac{20}{13}\right)\end{matrix}\right.\)
Câu 2:
Do (C) tiếp xúc \(\Delta\Leftrightarrow R=d\left(C;\Delta\right)\)
\(\Rightarrow R=\frac{\left|-2.5-12.2-10\right|}{\sqrt{5^2+12^2}}=\frac{44}{13}\)