Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đường tròn tâm C tiếp xúc với Δ nên R = d(C, Δ).
Do đó ta có :
Bán kính R của đường tròn tâm C(-2; -2) và tiếp xúc với đường thẳng
∆ : 5x + 12y – 10 = 0 thì bằng khoảng cách từ C đến ∆
R = d(C ;∆) =
=> R = =
chính là khoảng cách từ C(-2,-2) Đến đường thẳng \(\Delta\): 5x+ 12 y -10=0 và bằng: 44/13 nhá!!!!!
1.
Gọi \(I\left(x;y\right)\) là tâm đường tròn \(\Rightarrow\overrightarrow{AI}=\left(x-1;y-3\right)\)
Do đường tròn tiếp xúc với \(d_1;d_2\) nên:
\(d\left(I;d_1\right)=d\left(I;d_2\right)\Rightarrow\dfrac{\left|5x+y-3\right|}{\sqrt{26}}=\dfrac{\left|2x-7y+1\right|}{\sqrt{53}}\)
Chà, đề đúng ko em nhỉ, thế này thì vẫn làm được nhưng rõ ràng nhìn 2 cái mẫu kia thì số liệu sẽ xấu 1 cách vô lý.
2.
Phương trình đường thẳng kia là gì nhỉ? \(2x+y=0\) à?
Do tâm (C) thuộc \(\Delta\) nên có dạng: \(I\left(-2a-3;a\right)\)
\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2a-3-a+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\sqrt{2}\)
\(\Leftrightarrow\left|3a+2\right|=2\Rightarrow\left[{}\begin{matrix}a=0\\a=-\dfrac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(-3;0\right)\\I\left(-\dfrac{1}{3};-\dfrac{4}{3}\right)\end{matrix}\right.\)
Có 2 đường tròn thỏa mãn: \(\left[{}\begin{matrix}\left(x+3\right)^2+y^2=2\\\left(x+\dfrac{1}{3}\right)^2+\left(y+\dfrac{4}{3}\right)^2=2\end{matrix}\right.\)
a.
\(R=d\left(I;d\right)=\dfrac{\left|3-5.\left(-2\right)+1\right|}{\sqrt{1^2+\left(-5\right)^2}}=\dfrac{14}{\sqrt{26}}\)
b.
\(d\left(M;\Delta\right)=\dfrac{\left|4sina+4\left(2-sina\right)\right|}{\sqrt{cos^2a+sin^2a}}=8\)
Bạn thay vào vecto AM à? Mình tưởng phải thay vào điểm M chứ.
Bài 1:
Do M thuộc d nên tọa độ M có dạng \(M\left(a;\frac{2a+4}{3}\right)\)
\(\Rightarrow\overrightarrow{AM}=\left(a;\frac{2a+1}{3}\right)\)
Mà \(AM=5\Leftrightarrow a^2+\left(\frac{2a+1}{3}\right)^2=25\)
\(\Leftrightarrow13a^2+4a-224=0\Rightarrow\left[{}\begin{matrix}a=4\\a=-\frac{56}{13}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}M\left(4;\frac{9}{3}\right)\\M\left(-\frac{56}{13};-\frac{20}{13}\right)\end{matrix}\right.\)
Câu 2:
Do (C) tiếp xúc \(\Delta\Leftrightarrow R=d\left(C;\Delta\right)\)
\(\Rightarrow R=\frac{\left|-2.5-12.2-10\right|}{\sqrt{5^2+12^2}}=\frac{44}{13}\)