Tìm c ∈ ℤ sao cho:
4c là bội số của c + 3Tìm c ∈ ℤ sao cho:
4c là bội số của c + 3
Đáp số b ∈ { }
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(giai\)
\(\text{c+4 là ước số của 4c+33 }\)
\(\Leftrightarrow4c+33⋮c+4\Leftrightarrow4c+33-4\left(c+4\right)⋮c+4\Leftrightarrow17⋮c+4\)
\(\Leftrightarrow c+4\in\left\{\pm1;\pm17\right\}\Leftrightarrow c\in\left\{-3;-5;-21;13\right\}\)
c + 4 là ước số của 4c + 33
\(\Rightarrow4c+33⋮c+4\)
\(\Rightarrow4c+16+17=c+4\)
\(\Rightarrow4\left(c+4\right)+17⋮c+4\)
Mà : \(4\left(c+4\right)⋮c+4\)suy ra : \(17⋮c+4\)
\(\Rightarrow c+4\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
\(\Rightarrow c\in\left\{-21;-5;-3;13\right\}\)
7c - 21 chia hết cho c - 2
7c - 14 - 7 chia hết cho c - 2
7. ( c - 2) - 7 chia hết cho c - 2
=> -7 chia hết cho c - 2
=> c - 2 thuộc Ư ( - 7 ) = { 1 ; -1 ; 7 ; -7 }
Xét 4 trường hợp ta có :
\(\hept{\begin{cases}c-2=1\\c-2=-1\end{cases}\Rightarrow\hept{\begin{cases}c=3\\c=1\end{cases}}}\)
\(\hept{\begin{cases}c-2=7\\c-2=-7\end{cases}\Rightarrow\hept{\begin{cases}c=9\\c=-5\end{cases}}}\)
7c - 21 là bội của c - 2
=> 7c - 21 chia hết cho c - 2
=> 7c - 14 - 7 chia hết cho c - 2
=> 7.(c - 2) - 7 chia hết cho c - 2
Do 7.(c - 2) chia hết cho c - 2 => 7 chia hết cho c - 2
=> \(c-2\in\left\{1;-1;7;-7\right\}\)
=> \(c\in\left\{3;1;9;-5\right\}\)
\(\Rightarrow3c+28⋮c+4\Rightarrow\frac{3c+28}{c+4}\)
\(=\frac{3c+12}{c+4}+\frac{16}{c+4}=3+\frac{16}{c+4}\)
\(\Rightarrow16⋮c+4\Rightarrow c+4\varepsilonƯ\left(16\right)=\left\{\pm1,\pm2,\pm4,\pm8,\pm16\right\}\)
Đến đây bn từ từ thử từng trường hợp nhé!! chúc bn hok tốt~~~
Ta có: 6c-26=6(c-3)-8 là bội số của c-3
=> -8 là bội số của c-3 => c-3 là ước của 8
=> \(c\in\left(-5;-1;1;2;4;5;7;13\right)\)
c+7 là ước của 4c+40
=>4c+40 chia hết cho c+7
=>4c+28+12 chia hết cho c+7
=>4(c+7)+12 chia hết cho c+7
=>12 chia hết cho c+7
=>c+7 thuộc Ư(12)={1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
=>c thuộc {-6;-8;-5;-9;-4;-10;-3;-11;-1;-13;5;-19}
\(7b+2=7b-14+16=7\left(b-2\right)+16\)
Để \(7b+2⋮b-2\Leftrightarrow7\left(b-2\right)+16⋮b-2\Leftrightarrow16⋮b-2\Rightarrow b-2\in\left\{-16;-8;-4;-2;-1;1;2;4;8;16\right\}\Rightarrow b\in\left\{-14;-6;-2;0;1;3;4;6;10;18\right\}\)
Ta có: \(7b+2⋮b-2\)
\(\Leftrightarrow7b-14+16⋮b-2\)
mà \(7b-14⋮b-2\)
nên \(16⋮b-2\)
\(\Leftrightarrow b-2\inƯ\left(16\right)\)
\(\Leftrightarrow b-2\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(b\in\left\{3;1;4;0;6;-2;10;-6;18;-14\right\}\)
Vậy: \(b\in\left\{3;1;4;0;6;-2;10;-6;18;-14\right\}\)
7c - 9 ∈ B ( c - 2 ) <=> 7c - 9 ⋮ c - 2
7c - 9 ⋮ c - 2 <=> 7.( c - 2 ) + 5 ⋮ c - 2
Vì c - 2 ⋮ c - 2 . Để 7.( c - 2 ) + 5 ⋮ c - 2 <=> 5 ⋮ c - 2
=> c - 2 ∈ Ư ( 5 ) = { - 5 ; - 1 ; 1 ; 5 }
=> c ∈ { - 3 ; 1 ; 3 ; 7 }
=>7c-9 chia hết cho c-2
=>7(c-2)+5 chia hết cho c-2
Mà 7(c-2) chia hết cho c-2
=>5 chia hết cho c-2
=>c-2 E Ư(5)={-5;-1;1;5}
=> c E {-3;1;3;7}
5b - 45 là bội số của b - 7
=> 5b - 45 chia hết cho b - 7
=> 5b - 35 - 10 chia hết cho b - 7
=> 5( b - 7 ) - 10 chia hết cho b - 7
Vì 5( b - 7 ) chia hết cho b - 7
=> 10 chia hết cho b - 7
=> b - 7 ∈ Ư(10) = { ±1 ; ±2 ; ±5 ; ±10 }
tự tính nốt nhé :))
\(4c\in B\left(c+3\right)\)
\(\Rightarrow4c⋮c+3\)
mà \(c+3⋮c+3\)
Từ 2 điều trên suy ra:
\(4c-\left(c+3\right)⋮c+3\)
\(=4c-c-3⋮c+3\)
\(=3c-3⋮c+3 \)
\(\Rightarrow3c⋮c+3\)và \(-3⋮c+3\)
\(\Rightarrow c+3\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng:
Vậy \(c\in\left\{-6;-4;-1;0\right\}\)
học tốt
c thuộc { -1; 0 }