biết: \(ab+bc+ca=abc.CMR:\frac{bc}{\left(a+b\right)\left(a+c\right)}+\frac{ca}{\left(b+a\right)\left(b+c\right)}+\frac{ab}{\left(c+a\right)\left(c+b\right)}\le\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=\frac{1}{x}\), \(b=\frac{1}{y}\), \(c=\frac{1}{z}\) ta có: \(xy+yz+zx=1\)
Ta thấy \(x+y+z\ge\sqrt{3.\left(xy+yz+zx\right)}=\sqrt{3}\)
Áp dụng BĐT Cauchy- Schwarz ta có:
\(\frac{x}{yz+1}+\frac{y}{zx+1}+\frac{z}{xy+1}\ge\frac{\left(x+y+z\right)^2}{3xyz+x+y+z}=\frac{\left(x+y+z\right)^3}{3xyz.\left(x+y+z\right)+\left(x+y+z\right)^2}\)
\(\ge\frac{\left(x+y+z\right)^3}{\left(xy+yz+zx\right)^2+\left(x+y+z\right)^2}=\frac{\left(x+y+z\right)^3}{1+\left(x+y+z\right)^2}\)
\(=\frac{\left(x+y+z-\sqrt{3}\right).\left[4.\left(x+y+z\right)^2+\sqrt{3}\left(x+y+z\right)^2+3\right]}{4.\left[1+\left(x+y+z\right)^2\right]}+\frac{3\sqrt{3}}{4}\)
\(\ge\frac{3\sqrt{3}}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\sqrt{3}\)hay \(a=b=c=\sqrt{3}\)
cho đề này:
cho a;b;c là các số thực dương thỏa mãn a2+b2+c2=1.CMR:\(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\le\frac{9}{2}\)
Ta có : \(\left\{{}\begin{matrix}a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(a+c\right)\\b+ca=b\left(a+b+c\right)+ca=\left(b+c\right)\left(a+b\right)\\c+ab=c\left(a+b+c\right)+ab=\left(a+c\right)\left(b+c\right)\end{matrix}\right.\)
Từ đó ta có :
\(P=\Sigma\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a+b\right)}{\left(a+c\right)\left(b+c\right)}}\)
\(P=\Sigma\sqrt{\left(a+b\right)^2}\)
\(P=\Sigma\left(a+b\right)\)
\(P=2\left(a+b+c\right)\)
\(P=2\)
\(\text{a+b+c = 1}\Rightarrow a=1-b-c\Rightarrow a+bc=1-b-c+bc=\left(b-1\right)\left(c-1\right)\)
tương tự \(b+ca=\left(a-1\right)\left(c-1\right);c+ab=\left(a-1\right)\left(b-1\right)\)
đặt a-1=x ; b-1=y ; c-1=z , ta có
\(P=\sqrt{\frac{yzzx}{xy}}+\sqrt{\frac{xzxy}{yz}}+\sqrt{\frac{xyyz}{xz}}=\sqrt{z^2}+\sqrt{x^2}+\sqrt{y^2}=x+y+z=1\)
Giải
ab + bc + ca = abc =>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
chọn a = 7 ; b = 3 ; c = \(\frac{21}{11}\)
=> \(\frac{bc}{\left(a+b\right)\left(a+c\right)}+\frac{ca}{\left(b+a\right)\left(b+c\right)}+\frac{ab}{\left(c+a\right)\left(c+b\right)}=0,81>\frac{3}{4}\)
Vậy BĐT phải là :
\(\frac{bc}{\left(a+b\right)\left(a+c\right)}+\frac{ca}{\left(b+a\right)\left(b+c\right)}+\frac{ab}{\left(c+a\right)\left(c+b\right)}\ge\frac{3}{4}\)
quy đồng ta có :
\(\frac{b^2c+bc^2+c^2a+ca^2+a^2b+ab^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{4}\)
<=> 4 .( b2c + bc2 + c2a + ca2 + a2b +ab2 ) \(\ge\)3(2abc + a2b + ab2 + b2c + bc2 + c2a + ca2 )
<=> a2b + ab2 +b2c +bc2 + c2a + ac2 \(\ge\)6abc
<=> \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)
<=>\(\frac{a+b}{c}+1+\frac{b+c}{a}+\frac{c+a}{b}\ge9\)
<=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) ( 1 )
Ta có BĐT phụ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
<=> ( a + b + c )( ab + bc + ac ) \(\ge\)9abc
Thật vậy do \(a+b+c\ge3\sqrt[3]{abc}\)
\(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)
=> \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)=9\)
đpcm .Dấu " = " xảy ra khi a= b = c
Đề em nghĩ có chút sai sai nên em sửa rồi nha anh ( chắc vậy )
Không biết có ai bị lỗi công thức Toán như mình không... Cứ phải mượn trình gõ Latex bên AoPS không à... Gõ bên olm không hiện.
Giả sử . Ta có:
Vậy điều kiện bài toán là thừa thải, và bất đẳng thức trên ngược dấu :)))