K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(gt)

AH là cạnh chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

b) Ta có: ΔABH=ΔACH(cmt)

⇒BH=CH(hai cạnh tương ứng)

mà BH+CH=BC=12cm(H nằm giữa B và C)

nên \(BH=CH=\frac{BC}{2}=\frac{12}{2}=6cm\)

Áp dụng định lí pytago vào ΔABH vuông tại H, ta được

\(AB^2=AH^2+BH^2\)

hay \(AH^2=AB^2-BH^2=10^2-6^2=64\)

\(AH=\sqrt{64}=8cm\)

Vậy: AH=8cm

c) Xét ΔBHM vuông tại M và ΔCHN vuông tại N có

BH=CH(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBHM=ΔCHN(cạnh huyền-góc nhọn)

d) Ta có: \(\widehat{ABC}+\widehat{OBC}=\widehat{ABO}=90^0\)(tia BC nằm giữa hai tia BA,BO)

\(\widehat{ACB}+\widehat{OCB}=\widehat{ACO}=90^0\)(tia CB nằm giữa hai tia CA,CO)

\(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(định lí đảo của tam giác cân)

5 tháng 4 2020

\(\text{a) Có }\Delta ABC\text{cân tại A}\Rightarrow\widehat{ABC}=\widehat{ACB}\)

\(\text{Xét }\Delta AHB\text{ và }\Delta AHC\text{ có:}\)

\(\widehat{AHB}=\widehat{AHC}=90^o\)

\(AB=AC=10cm\)\(\Rightarrow\)\( \Delta AHB\text{=}\Delta AHC\left(ch-gn\right)\)

\(\widehat{ABC}=\widehat{ACB}\)

\(\text{b) Có }\Delta AHB=\Delta AHC\Rightarrow HB=HC=\frac{BC}{2}=\frac{12}{2}=6\left(cm\right)\)

\(\text{ Xét }\Delta AHB\text{vuông tại H có:}\)

\(AH^2+BH^2=AB^2\) (Định lý py-ta-go)

\(AH^2=AB^2-BH^2=10^2-6^2=100-36=64\)

\(AH=\sqrt{64}=8\left(cm\right)\)

\(\text{c) Xét }\Delta BHM\text{ và }\Delta CHN\text{ có:}\)

\(\widehat{BMH}=\widehat{CNH}=90^o\)

\(HB=HC\text{ (CMT)}\)\(\Rightarrow\)\(\text{ }\Delta BHM\text{ = }\Delta CHN \left(CH-GN\right)\)

\(\widehat{ABC}=\widehat{ACB}\)

\(\text{d) }\)\(\text{Ta có: }MH\perp AB,OB\perp AB\Rightarrow MH//OB\)

\(\Rightarrow\widehat{MHB}=\widehat{CBO}\text{ (2 góc so le trong)}\)

\(\text{Ta có: }NH\perp AC,OC\perp AC\Rightarrow NH//OC\)

\(\Rightarrow\widehat{NHC}=\widehat{BCO}\text{ (2 góc so le trong)}\)

\(\text{ }\text{Mà }\Delta BHM\text{ = }\Delta CHN\Rightarrow\widehat{MHB}=\widehat{NHC}\)

\(\text{Hay}\widehat{CBO}=\widehat{BCO}\)\(\Rightarrow\Delta OBC\text{ cân tại O}\)

6 tháng 5 2018

â)Ta có :  AB = AC =10 cm (gt)

=> tam giác ABC cân tại A (2 cạnh bên = nhau )

b) Xét tam giác AHB va tam giac AHC ,co : 

\(\widehat{AHB}=\widehat{AHC}=90^O\) ( AH là đường cao ) 

AB =AC =10 cm (gt )

AH là cạnh chung 

Do đo : tam giác AHB =tam giác AHC ( cạnh huyền - cạnh góc vuông ) 

=>\(\widehat{BAH}=\widehat{CAH}\)( hai góc tương ứng ) 

=>AH là tia phân giác của góc A 

c)Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác 

Nên :H là trung điểm của BC

=>BH = CH  = \(\frac{BC}{2}\)=12/2 = 6 cm

6 tháng 5 2018

TRẢ LỜI TIẾP CÂU Ở TRÊN NHA  ( HỒI NÃY BẤM NHẦM GỬI TRẢ LỜI ) 

b) Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác  

Nên : H là trung điểm của BC

=> BH =CH =\(\frac{BC}{2}=\frac{12}{2}=6cm\)

Xét : tam giác BMH và tam giác HCN , co :

 BH = CH = 6cm ( chứng minh trên ) 

\(\widehat{M}=\widehat{N}=90^o\left(gt\right)\)

\(\widehat{B}=\widehat{C}\) (Vì tam giác ABC cân tại A nên hai góc ở đáy = nhau ) 

Do do:tm giác BHM = tam giác HCN

đ) Áp dụng định lý pytago vào tam giác  AHC vuông tại H 

\(AH^2=AC^2-HC^2\) =\(10^2-6^2\)=\(100-36=64\)

=>\(AH=\sqrt{64}=8cm\)  OK CHÚC BẠN HỌC TỐT 

15 tháng 3 2020

Bạn ơi có gải ko đăng lên đi

12 tháng 4 2020

1.a)
Vì AB=AC => Tam giác ABC cân
b)
Vì △ABC cân
=> góc ABC=góc ACB (1)
góc AHC=góc AHB=90 độ (2)
AB=AC (gt) (3)
Từ (1)(2)(3) => △AHB = △AHC (cạnh huyền-góc nhọn)
=> góc BAH = góc CAH
=> AH là tia phân giác của góc A
c) Vì góc ABC = góc ACB
=> góc MBH = góc NCH
góc BMH = góc HNC =90 độ
=> △BHM = △HCN (g.g)
d) Ta có: AH.BC=AB.AC
=> AH.12=10.10
=> AH = 25/3 (cm)

30 tháng 5 2017

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

=>ΔABH=ΔACH

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

góc MAH=góc NAH

=>ΔAMH=ΔANH

=>AM=AN

Xét ΔABC có AM/AB=AN/AC

nên MN//BC

b: Xét ΔECB có

CA là trung tuyến

CA=BE/2

=>ΔECB vuông tại C

Xét tứ giác ADCH có

góc ADC=góc AHC=góc DCH=90 độ

=>ADCH là hcn

=>AD vuông góc AH

10 tháng 2 2022

tham khảo

 

â)Ta có :  AB = AC =10 cm (gt)

=> tam giác ABC cân tại A (2 cạnh bên = nhau )

b) Xét tam giác AHB va tam giac AHC ,co : 

ˆAHB=ˆAHC=90OAHB^=AHC^=90O ( AH là đường cao ) 

AB =AC =10 cm (gt )

AH là cạnh chung 

Do đo : tam giác AHB =tam giác AHC ( cạnh huyền - cạnh góc vuông ) 

=>ˆBAH=ˆCAHBAH^=CAH^( hai góc tương ứng ) 

=>AH là tia phân giác của góc A 

c)Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác 

Nên :H là trung điểm của BC

=>BH = CH  = BC2BC2=12/2 = 6 cm

10 tháng 2 2022

còn mấy phần kia nữa mà