Câu 7. Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5m/s, trên cạnh thứ ba với vận tốc 4m/s, trên cạnh thứ tư với vận tốc 3m/s. Tính độ dài cạnh hình vuông, biết rằng tổng thời gian vật chuyển động trên bốn cạnh là 59 giây.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cùng một đoạn đường, vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.
Gọi x, y, z là thời gian chuyển động lần lượt với các vận tốc 5m/s; 4m/s; 3m/s.
Ta có: 5x = 4y = 3z và x + y + z = 59
hay \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{4}}=\dfrac{z}{\dfrac{1}{3}}=\dfrac{x+y+z}{\dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{3}}=\dfrac{59}{\dfrac{59}{60}}=60\)
do đó \(x=60.\dfrac{1}{5}=12\\ y=60.\dfrac{1}{4}=15\\ z=60.\dfrac{1}{3}=20\)
Vậy cạnh hình vuông là 5.12 = 60m
Tham Khảo:
Cùng một đoạn đường, vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.
Gọi x, y, z là thời gian chuyển động lần lượt với các vận tốc 5m/s; 4m/s; 3m/s.
Ta có: 5x = 4y = 3z và x + y + z = 59
Hay
Do đó: x = 60. = 12
y = 60. = 15
z = 60. = 20
Vậy cạnh hình vuông là 5.12 = 60m
theo bài toán ta có:
5*t1=5*t2=4*t3=3*t4(1) và t1+t2+t3+t4=59(2)
(1)=>t1=t2=(4*t3)/5=(3*t4)/5(3)
Từ (2) và (3) => t1+t1+(5*t1)/4+(5*t1)/3=59
=> t1=12(s)
=> cạnh hình vuông: 5*12=60(m)
Gọi thời gian vật chuyển động trên cạnh thứ nhất; thứ hai ; thứ ba; thứ tư lần lượt là: a; b; c; d
Theo đề, ta có: a+b+c+d=59 và 5a=5b=4c=3d
=>a/12=b/12=c/15=d/20 và a+b+c+d=59
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{12}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{d}{20}=\dfrac{a+b+c+d}{12+12+15+20}=\dfrac{59}{59}=1\)
=>a=12; b=12; c=15; d=20
Độ dài cạnh là 12*5=60m
Cùng một đoạn đường, vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.
Gọi x, y, z là thời gian chuyển động lần lượt với các vận tốc 5m/s; 4m/s; 3m/s.
Ta có: 5x = 4y = 3z và x + y + z = 59
=>
Do đó: x = 60. = 12
y = 60. = 15
z = 60. = 20
Vậy cạnh hình vuông là
5.12 = 60m
Cùng một đoạn đường, vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.
Gọi x, y, z là thời gian chuyển động lần lượt với các vận tốc 5m/s; 4m/s; 3m/s.
Ta có: 5x = 4y = 3z và x + y + z = 59
Hay
Do đó: x = 60. = 12
y = 60. = 15
z = 60. = 20
Vậy cạnh hình vuông là 5.12 = 60m
bn t 2k8 ơi,cái này lâu rồi nên người ta ko k đâu
Gọi a là độ dài cạnh hình vuông (m)
Theo đề ta có phương trình:
\(\frac{2a}{5}+\frac{a}{4}+\frac{a}{3}=59\)
Nên 24a + 15a + 20a = 3540
Do đó 59a = 3540
Vậy a = 60 (m) là độ dài cạnh hình vuông
Trên cùng một đoạn đường, vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.
Gọi $a,b,c$ là thời gian chuyển động lần lượt với vận tốc $5m/s;4m/s;3m/s$
Ta có: $5.a=4.b=3.c$ và $a+a+b+c=59$
Hay: \(\dfrac{a}{{\dfrac{1}{5}}} = \dfrac{b}{{\dfrac{1}{4}}} = \dfrac{c}{{\dfrac{1}{3}}} = \dfrac{{a + a + b + c}}{{\dfrac{1}{5} + \dfrac{1}{5} + \dfrac{1}{4} + \dfrac{1}{3}}} = \dfrac{{59}}{{\dfrac{{59}}{{60}}}} = 60\)
Khi đó: \(a=60.\dfrac{1}{5}=12;b=60.\dfrac{1}{4}=15;c=60.\dfrac{1}{3}=20\)
Vậy cạnh hình vuông là $5.12=60(m)$