K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

Ta có hệ phương trình : \(\left\{{}\begin{matrix}x+xy+y=5\\x^2+y^2=5\left(I\right)\end{matrix}\right.\)

=> ​​\(\left\{{}\begin{matrix}x+y=5-xy\\x^2+y^2+2xy=5+2xy\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y=5-xy\\\left(x+y\right)^2=5+2xy\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y=5-xy\\\left(5-xy\right)^2=5+2xy\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y=5-xy\\25-10xy+x^2y^2-5-2xy=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y=5-xy\\20-12xy+x^2y^2=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y=5-xy\\\left(xy\right)^2-2xy-10xy+20=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y=5-xy\\\left(xy-10\right)\left(xy-2\right)=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y=5-xy\\\left[{}\begin{matrix}xy-10=0\\xy-2=0\end{matrix}\right.\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y=5-xy\\\left[{}\begin{matrix}x=10\\x=2\end{matrix}\right.\end{matrix}\right.\)

TH1 : x = 10 .

- Thay x = 10 vào phương trình ( I ) ta được :

\(10^2+y^2=5\)

=> \(y^2=-95\) ( vô lý )

-> x = 10 ( loại )

TH2 : x = 2 .

- Thay x = 2 vào phương trình ( I ) ta được :

\(2^2+y^2=5\)

=> \(y^2=1\)

=> \(y=1\)

Vậy phương trình trên có nghiệm duy nhất là \(\left(x;y\right)=\left(2;1\right)\)

26 tháng 7 2019

Ta có  x + y 2 + y = 3 2 x 2 + y 2 + x y + x = 5 ⇔ 2 x 2 + 4 x y + 2 y 2 + 2 y = 6 2 x 2 + 2 y 2 + 2 x y + x = 5

Suy ra 2xy + 2y – x – 1 = 0 ⇔ (x + 1) (2y – 1) = 0x = −1 hoặc y = 1 2  

Với x = −1, ta được y 2 – y – 2 = 0 ⇔ y = − 1 y = 2  

Ta được hai nghiệm (−1; −1) và (−1; 2)

Với y = 1 2 , ta được x 2 + x − 9 4 = 0 ⇔ x = − 1 ± 10 2    

Ta được hai nghiệm − 1 − 10 2 ; 1 2 và  − 1 + 10 2 ; 1 2

Vậy hệ có bốn nghiệm (−1; −1); (−1; 2); − 1 − 10 2 ; 1 2 và  − 1 + 10 2 ; 1 2

Đáp án:A

Đẳng thức nào sau đây là đúng:A. (x2−xy+y2)(x+y)=x3−y3B. (x2+xy+y2)(x−y)=x3−y3C. (x2+xy+y2)(x+y)=x3+y3D. (x2−xy+y2)(x−y)=x3+y3Câu 2. Tích của đơn thức −5x3 và đa thức 2x2+3x−5 là:A. 10x5−15x4+25x3B. −10x5−15x4+25x3C. −10x5−15x4−25x3D. .−10x5+15x4−25x3Câu 8. Rút gọn biểu thức B = (x – 2)(x2 + 2x + 4) – x(x – 1)(x + 1) + 3xA. x – 8B. 8 – 4xC. 8 – xD. 4x – 8Câu 9. Kết quả của phép tính -4x2(6x3 + 5x2 – 3x + 1) bằngA. 24x5 + 20x4 + 12x3 – 4x2B. -24x5 –...
Đọc tiếp

Đẳng thức nào sau đây là đúng:

A. (x2−xy+y2)(x+y)=x3−y3

B. (x2+xy+y2)(x−y)=x3−y3

C. (x2+xy+y2)(x+y)=x3+y3

D. (x2−xy+y2)(x−y)=x3+y3

Câu 2. Tích của đơn thức −5x3 và đa thức 2x2+3x−5 là:

A. 10x5−15x4+25x3

B. −10x5−15x4+25x3

C. −10x5−15x4−25x3

D. .−10x5+15x4−25x3

Câu 8. Rút gọn biểu thức B = (x – 2)(x2 + 2x + 4) – x(x – 1)(x + 1) + 3x

A. x – 8

B. 8 – 4x

C. 8 – x

D. 4x – 8

Câu 9. Kết quả của phép tính -4x2(6x3 + 5x2 – 3x + 1) bằng

A. 24x5 + 20x4 + 12x3 – 4x2

B. -24x5 – 20x4 + 12x3 + 1

C. -24x5 – 20x4 + 12x3 – 4x2

D. -24x5 – 20x4 – 12x3 + 4x2

Câu 10. Tích (2x – 3)(2x + 3) có kết quả bằng

A. 4x2 + 12x+ 9

B. 4x2 – 9

C. 2x2 – 3

D. 4x2 + 9

Câu 11. Chọn câu đúng.

A. (x2 – 1)(x2 + 2x) = x4 – x3 – 2x

B. (x2 – 1)(x2 + 2x) = x4 – x2 – 2x

C. (x2 – 1)(x2 + 2x) = x4 + 2x3 – x2 – 2x

D. (x2 – 1)(x2 + 2x) = x4 + 2x3 – 2x

Câu 12. Tích của đơn thức x2 và đa thức là: A. B. C. D. Câu 13. Rút gọn biểu thức B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7) ta được

A. 0

B. 1

C. 19

D. – 19

1

Câu 1; B

Câu 2: B

13 tháng 12 2020

a. Trừ vế theo vế \(\left(1\right)\) cho \(\left(2\right)\) ta được \(x^2-y^2=4x-4y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=4-y\end{matrix}\right.\)

TH1: \(x=y\)

Phương trình \(\left(1\right)\) tương đương:

\(x^2=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=y=2\end{matrix}\right.\)

TH2: \(x=4-y\)

Phương trình \(\left(2\right)\) tương đương:

\(y^2=4y-4\)

\(\Leftrightarrow y^2-4y+4=0\)

\(\Leftrightarrow\left(y-2\right)^2=0\)

\(\Leftrightarrow y=2\)

\(\Rightarrow x=2\)

Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right);\left(2;2\right)\right\}\)

b. \(\left\{{}\begin{matrix}x+y+xy=5\\x^2+y^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-2xy=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-10+2\left(x+y\right)=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2+2\left(x+y\right)-15=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y+5\right)\left(x+y-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left[{}\begin{matrix}x+y=-5\\x+y=3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\Leftrightarrow\) vô nghiệm

TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)

Vậy ...

20 tháng 11 2021

\(A=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x=x^2+4x\\ B=\left(x^2+xy+y^2\right)\left(x-y\right)=x^3-y^3\)

24 tháng 9 2017

ĐK:  y − 2 x + 1 ≥ 0 , 4 x + y + 5 ≥ 0 , x + 2 y − 2 ≥ 0 , x ≤ 1

T H 1 :   y − 2 x + 1 = 0 3 − 3 x = 0 ⇔ x = 1 y = 1 ⇒ 0 = 0 − 1 = 10 − 1 ( k o   t / m ) T H 2 :   x ≠ 1 , y ≠ 1  

Đưa pt thứ nhất về dạng tích ta được

( x + y − 2 ) ( 2 x − y − 1 ) = x + y − 2 y − 2 x + 1 + 3 − 3 x ( x + y − 2 ) 1 y − 2 x + 1 + 3 − 3 x + y − 2 x + 1 = 0 ⇒ 1 y − 2 x + 1 + 3 − 3 x + y − 2 x + 1 > 0 ⇒ x + y − 2 = 0

Thay y= 2-x vào pt thứ 2 ta được  x 2 + x − 3 = 3 x + 7 − 2 − x

⇔ x 2 + x − 2 = 3 x + 7 − 1 + 2 − 2 − x ⇔ ( x + 2 ) ( x − 1 ) = 3 x + 6 3 x + 7 + 1 + 2 + x 2 + 2 − x ⇔ ( x + 2 ) 3 3 x + 7 + 1 + 1 2 + 2 − x + 1 − x = 0

Do  x ≤ 1 ⇒ 3 3 x + 7 + 1 + 1 2 + 2 − x + 1 − x > 0

Vậy  x + 2 = 0 ⇔ x = − 2 ⇒ y = 4 (t/m)

28 tháng 5 2017

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

Lời giải:

a.

$x^2-x=y^2-1$
$\Leftrightarrow x^2-x+1=y^2$

$\Leftrightarrow 4x^2-4x+4=4y^2$

$\Leftrightarrow (2x-1)^2+3=(2y)^2$

$\Leftrightarrow 3=(2y)^2-(2x-1)^2=(2y-2x+1)(2y+2x-1)$

Đến đây xét các TH:

TH1: $2y-2x+1=1; 2y+2x-1=3$

TH2: $2y-2x+1=-1; 2y+2x-1=-3$

TH3: $2y-2x+1=3; 2y+2x-1=1$

TH4: $2y-2x+1=-3; 2y+2x-1=-1$

b.

$x^2+12x=y^2$

$\Leftrightarrow (x+6)^2=y^2+36$

$\Leftrightarrow 36=(x+6)^2-y^2=(x+6-y)(x+6+y)$

Đến đây xét trường hợp tương tự phần a.

c.

$x^2+xy-2y-x-5=0$

$\Leftrightarrow x^2+xy=x+2y+5$
$\Leftrightarrow 4x^2+4xy=4x+8y+20$

$\Leftrightarrow (2x+y)^2=4x+8y+20+y^2$

$\Leftrightarrow (2x+y)^2-2(2x+y)+1=y^2+6y+21$

$\Leftrightarrow (2x+y-1)^2=(y+3)^2+12$
$\Leftrightarrow (2x+y-1)^2-(y+3)^2=12$

$\Leftrightarrow (2x+y-1-y-3)(2x+y-1+y+3)=12$

$\Leftrightarrow (2x-4)(2x+2y+2)=12$

$\Leftrightarrow (x-2)(x+y+1)=3$

Đến đây đơn giản rồi.

 

8 tháng 8 2021

a) \(x^2-x=y^2-1\)

\(\Rightarrow x^2-x+1=y^2\)

\(\Rightarrow4x^2-4x+4=4y^2\)

\(\Rightarrow4x^2-4x+1+3=\left(2y\right)^2\)

\(\Rightarrow\left(2x+1\right)^2-\left(2y\right)^2=-3\)

\(\Rightarrow\left(2x-2y+1\right)\left(2x+2y+1\right)=-3\)

Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}\left(2x-2y+1\right)\left(2x+2y+1\right)\in Z\\\left(2x-2y+1\right)\left(2x+2y+1\right)\inƯ\left(7\right)\end{matrix}\right.\)

Ta có bảng:

x-y-10-21
x+y1-20-1
x0-1-10
y1-1-1-1

Vậy \(\left(x,y\right)\in\left\{\left(0;1\right);\left(-1;-1\right);\left(-1;-1\right);\left(0;-1\right)\right\}\)