Cho hệ phương trình \(\hept{\begin{cases}3x+my=5\\mx-y=2\end{cases}}\). Tìm giá trị của m để phương trình có nghiệm (x;y) thỏa mãn \(x+y=1-\frac{m^2}{m^2+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mx+y=m
<=>mx-m=-y
<=>m(x-1)=-y(1)
x+my=1
<=>x-1=-my
<=>m(x-1)=-m^2y(2)
Thay (1) vào (2) ta có:
-y=-m^2y
<=> y=m^2y
<=>m^2=1
=>m thuộc{1;-1}
Vậy m thuộc{-1;1}
\(a,\)Từ hệ PT trên \(< =>\hept{\begin{cases}2x-y=2\\3x+2y=5\end{cases}}\)
\(< =>\hept{\begin{cases}4x-2y=4\\3x+2y=5\end{cases}}\)
\(< =>\hept{\begin{cases}7x=9\\2x-y=2\end{cases}}\)
\(< =>\hept{\begin{cases}x=\frac{9}{7}\\\frac{18}{7}-y=2\end{cases}}\)
\(< =>\hept{\begin{cases}x=\frac{9}{7}\\y=\frac{4}{7}\end{cases}}\)
Vậy nghiệm của PT trên là ...
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
4.
(1) => y=2m-mx thay vào (2) ta được x+m(2m-mx)=m+1
<=> x-m2x=-2m2+m+1
<=> x(1-m)(1+m)=-(m-1)(1+2m)
với m=-1 thì pt vô nghiệm
với m=1 thì pt vô số nghiệm => có nghiệm nguyên => chọn
với m\(\ne\pm\) 1 thì x=\(\frac{-2m-1}{m+1}\)=\(-2+\frac{1}{m+1}\)
=> y=2m-mx=xm-m(-2+\(\frac{1}{m+1}\)) =2m+2m-\(\frac{m}{m+1}\)=4m-1+\(\frac{1}{m+1}\)
để x y nguyên thì \(\frac{1}{m+1}\)nguyên ( do m nguyên)
=> m+1\(\in\)Ư(1)={1;-1}
=> m\(\in\){0;-2} mà m nguyên âm nên m=-2
vậy m=-2 thì ...
P/s hình như 1 2 3 sai đề