K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔMAB và ΔMCK có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMK}\)(hai góc đối đỉnh)

MB=MK(gt)

Do đó: ΔMAB=ΔMCK(c-g-c)

Suy ra: AB=CK(hai cạnh tương ứng)

Ta có: ΔMAB=ΔMCK(cmt)

nên \(\widehat{MAB}=\widehat{MCK}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{MCK}=90^0\)

\(\Leftrightarrow CK\perp CM\) tại C

hay CK\(\perp\)AC(Đpcm)

b) Xét ΔANC và ΔBNI có 

AN=BN(N là trung điểm của AB)

\(\widehat{ANC}=\widehat{BNI}\)(hai góc đối đỉnh)

NC=NI(gt)

Do đó: ΔANC=ΔBNI(c-g-c)

Suy ra: \(\widehat{ACN}=\widehat{BIN}\)(hai góc tương ứng)

mà \(\widehat{ACN}\) và \(\widehat{BIN}\) là hai góc ở vị trí so le trong

nên AC//BI(Dấu hiệu nhận biết hai đường thẳng song song)

Xét ΔAMK và ΔCMB có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMK}=\widehat{CMB}\)(hai góc đối đỉnh)

MK=MB(gt)

Do đó: ΔAMK=ΔCMB(c-g-c)

Suy ra: \(\widehat{AKM}=\widehat{CBM}\)(hai góc tương ứng)

mà \(\widehat{AKM}\) và \(\widehat{CBM}\) là hai góc ở vị trí so le trong

nên AK//BC(Dấu hiệu nhận biết hai đường thẳng song song)

16 tháng 2 2021

Thank you so much! Cảm ơn bạn nha!hihi

27 tháng 2 2020

A B C M N K I 1 2 1 2

A) XÉT \(\Delta BAM\)\(\Delta KCM\)

       \(AM=CM\left(GT\right)\)

       \(\widehat{M_1}=\widehat{M_2}\left(Đ/Đ\right)\)

      \(BM=KM\left(GT\right)\)

\(\Rightarrow\Delta BAM=\Delta KCM\left(C-G-C\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{KCM}=90^o\)hai góc tương ứng

HAY \(\widehat{ACK}=90^o\)

b) XÉT \(\Delta IBN\)\(\Delta CAN\)

         \(IN=CN\left(GT\right)\)

         \(\widehat{N_1}=\widehat{N_2}\left(Đ/Đ\right)\)

      \(BN=AN\left(GT\right)\)

\(\Rightarrow\Delta IBN=\Delta CAN\left(C-G-C\right)\)

\(\Rightarrow\widehat{IBN}=\widehat{CAN}=90^o\)hai góc tương ứng

hai góc này ở vị trí SO LE TRONG BẰNG NHAU

\(\Rightarrow IB//AC\left(đpcm\right)\)

\(\widehat{BAM}=\widehat{KCM}=90^o\)

HAY\(\widehat{BAC}=\widehat{ACK}=90^o\)

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU

\(\Rightarrow AK//BC\left(đpcm\right)\)

C)VÌ\(\widehat{IBN}=\widehat{CAN}=90^o\)

HAY\(\widehat{IBA}=\widehat{BAC}=90^o\)

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU

\(\Rightarrow IA//BC\left(1\right)\)

\(AK//BC\left(CMT\right)\left(2\right)\)

TỪ (1)VÀ (2) => I,A,K THẲNG HÀNG

16 tháng 12 2022

UKM THÌ CÓ BÀI TỰA VẬY BẠN SO ĐC CHỨ 

a) Xét AIM và BIC có:IA = IB (do I là trung điểm của AB);AIM BIC(hai góc đối đỉnh);IM = IC (giảthiết).Do đó AIM = BIC (c.g.c)Suy ra AM = BC (hai cạnh tương ứng) và MAI CBI(hai góc tương ứng)  Mà MAI, CBIlà hai góc ởvịtrí so le trong nên AM // BC.b) Xét ANE và CBE có:EA = EC (do E là trung điểm của AC);AEN CEB(hai góc đối đỉnh);EN= EB(giảthiết).Do đó ANE = CBE (c.g.c)Suy ra NAE BCE(hai góc tương ứng)Mà NAE, BCElà hai góc ởvịtrí so le trong nên AN// BC.c) Ta có AM // BC (theo câu a) và AN // BC (theo câu b)Do đó qua điểm A có hai đường thẳng song song với BC nên theo tiên đềEuclid, hai đường thẳng AM và AN trùng nhau hay ba điểm A, M, N thẳng hàng.Lại có ANE = CBE (theo câu b) nên AN = CB (hai cạnh tương ứng)Mặt khác AM = BC (theo câu a)Do đó AM = AN (cùng bằng BC)  Mà ba điểm A, M, N thẳng hàng nên A là trung điểm của MN.
16 tháng 12 2022

a: Xét ΔAMB và ΔCMD có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔAMB=ΔCMD

b: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

=>AB//CD và AB=CD

c: Xét tứ giác AKBC có

N là trung điểm chung của AB và KC

nên AKBC là hình bình hành

=>AK//BC

mà AD//BC

nên D,A,K thẳng hàng

4 tháng 5 2020

Bài này bạn tự kẻ hình giúp mình nha!

1. Xét tam giác AMB và tam giác CMD có:

AM = CM ( M là trung điểm của AC )

AMB = CMD ( 2 góc đối đỉnh )

BM = DM (gt)

=> tam giác AMB = tam giác CMD (c.g.c) (dpcm)

=> BAM = DCM ( 2 góc tương ứng)

=> DCM = 90o  => DC vuông góc với MC hay CD vuông góc với AC ( dpcm )

2. 

Xét tam giác AMD và tam giác CMB có:

AM = CM ( Theo 1.)

AMD = CMB ( 2 góc đối đỉnh )

DM = BM (gt)

=> tam giác AMD = tam giác CMB ( c.g.c)

=> AD = BC (2 cạnh tương ứng) (dpcm)

=> ADM = CBM (2 góc tương ứng)

Mà góc ADM và và góc CBM ở vị trí so le trong

=> AD // BC (dpcm)

3. Xét tam giác AEN và tam giác BCN có:

AN=BN ( N là trung điểm của AB)

ANE = BNC ( 2 góc đối đỉnh )

NE = NC (gt)

=> Tam giác AEN = tam giác BCN ( c.g.c)

=> AE = BC ( 2 cạnh tương ứng )        (1)

=>  EAN = CBN ( 2 góc tương ứng ) mà EAN và CBN ở vị trí so le trong => AE // BC         (2)

Theo 2. ta có :  +) AD=BC        (3)

                         +) AD // BC      (4)

Từ (1) và (3) Suy ra AE = AD  (5)

Từ (2) và (4) Suy ra A,E,D thẳng hàng    (6)

Từ (5) và (6) Suy ra A là trung điểm của ED (dpcm)

5 tháng 5 2020

sorry bn nha

mk lm xong rùi

15 tháng 2 2018

xét tam giác ABM và tam giác CMK 

AM = MC ( M là trung điểm của AC)

BM=MK 

góc AMB =góc CMK 

=> tam giác ABM và tam giác CMK( c.g.c)

=>goc BAC = goc ACK ( hai canh tuong ung )

ma goc BAC = 900

​=> góc ACK= 900

21 tháng 2 2018

mình đã trả lời hết các câu rồi nhưng mình ko may nhấn vào trang khác trên màn hình nên khi trả về thì không còn nên mình chỉ làm câu a cho mình xin lỗi nhưng nếu bạn còn cần thì mình  giải ngày cho .cảm ơn bạn