Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) XÉT \(\Delta BAM\)VÀ\(\Delta KCM\)CÓ
\(AM=CM\left(GT\right)\)
\(\widehat{M_1}=\widehat{M_2}\left(Đ/Đ\right)\)
\(BM=KM\left(GT\right)\)
\(\Rightarrow\Delta BAM=\Delta KCM\left(C-G-C\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{KCM}=90^o\)hai góc tương ứng
HAY \(\widehat{ACK}=90^o\)
b) XÉT \(\Delta IBN\)VÀ\(\Delta CAN\)CÓ
\(IN=CN\left(GT\right)\)
\(\widehat{N_1}=\widehat{N_2}\left(Đ/Đ\right)\)
\(BN=AN\left(GT\right)\)
\(\Rightarrow\Delta IBN=\Delta CAN\left(C-G-C\right)\)
\(\Rightarrow\widehat{IBN}=\widehat{CAN}=90^o\)hai góc tương ứng
hai góc này ở vị trí SO LE TRONG BẰNG NHAU
\(\Rightarrow IB//AC\left(đpcm\right)\)
VÀ\(\widehat{BAM}=\widehat{KCM}=90^o\)
HAY\(\widehat{BAC}=\widehat{ACK}=90^o\)
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
\(\Rightarrow AK//BC\left(đpcm\right)\)
C)VÌ\(\widehat{IBN}=\widehat{CAN}=90^o\)
HAY\(\widehat{IBA}=\widehat{BAC}=90^o\)
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
\(\Rightarrow IA//BC\left(1\right)\)
MÀ\(AK//BC\left(CMT\right)\left(2\right)\)
TỪ (1)VÀ (2) => I,A,K THẲNG HÀNG
xét tam giác ABM và tam giác CMK
AM = MC ( M là trung điểm của AC)
BM=MK
góc AMB =góc CMK
=> tam giác ABM và tam giác CMK( c.g.c)
=>goc BAC = goc ACK ( hai canh tuong ung )
ma goc BAC = 900
=> góc ACK= 900
mình đã trả lời hết các câu rồi nhưng mình ko may nhấn vào trang khác trên màn hình nên khi trả về thì không còn nên mình chỉ làm câu a cho mình xin lỗi nhưng nếu bạn còn cần thì mình giải ngày cho .cảm ơn bạn
Mong các bạn vẽ hình và giải giúp mik với, mình đang cần gấp
Thanks các bạn
a) tam giác ABM = tam giác CMK(c.g.c)
=> góc BAC=góc KCM=90 độ
b) tam giác INB = tam giác CNA(cgc)
=> góc BIN= gócNCA
mà hai góc này ở vị trí so le trong => IB// AC
BA vuông góc AC( tam giác ABC vuông ở A)
CK vuông góc AC (góc ACK =90 độ)
=> BA// CK
c) Tam giác INA= tam giác CNB(c.g.c)
=> góc AIN=góc NCB
=> AI//BC ; AK // BC(cmt)
=> AI trùng AK
=> A; I; K thẳng hàng
lại có AI=AK(=BC)
=> A là trung điểm của IK(đpcm)
Bài này bạn tự kẻ hình giúp mình nha!
1. Xét tam giác AMB và tam giác CMD có:
AM = CM ( M là trung điểm của AC )
AMB = CMD ( 2 góc đối đỉnh )
BM = DM (gt)
=> tam giác AMB = tam giác CMD (c.g.c) (dpcm)
=> BAM = DCM ( 2 góc tương ứng)
=> DCM = 90o => DC vuông góc với MC hay CD vuông góc với AC ( dpcm )
2.
Xét tam giác AMD và tam giác CMB có:
AM = CM ( Theo 1.)
AMD = CMB ( 2 góc đối đỉnh )
DM = BM (gt)
=> tam giác AMD = tam giác CMB ( c.g.c)
=> AD = BC (2 cạnh tương ứng) (dpcm)
=> ADM = CBM (2 góc tương ứng)
Mà góc ADM và và góc CBM ở vị trí so le trong
=> AD // BC (dpcm)
3. Xét tam giác AEN và tam giác BCN có:
AN=BN ( N là trung điểm của AB)
ANE = BNC ( 2 góc đối đỉnh )
NE = NC (gt)
=> Tam giác AEN = tam giác BCN ( c.g.c)
=> AE = BC ( 2 cạnh tương ứng ) (1)
=> EAN = CBN ( 2 góc tương ứng ) mà EAN và CBN ở vị trí so le trong => AE // BC (2)
Theo 2. ta có : +) AD=BC (3)
+) AD // BC (4)
Từ (1) và (3) Suy ra AE = AD (5)
Từ (2) và (4) Suy ra A,E,D thẳng hàng (6)
Từ (5) và (6) Suy ra A là trung điểm của ED (dpcm)
UKM THÌ CÓ BÀI TỰA VẬY BẠN SO ĐC CHỨ
a) Xét AIM và BIC có:IA = IB (do I là trung điểm của AB);AIM BIC(hai góc đối đỉnh);IM = IC (giảthiết).Do đó AIM = BIC (c.g.c)Suy ra AM = BC (hai cạnh tương ứng) và MAI CBI(hai góc tương ứng) Mà MAI, CBIlà hai góc ởvịtrí so le trong nên AM // BC.b) Xét ANE và CBE có:EA = EC (do E là trung điểm của AC);AEN CEB(hai góc đối đỉnh);EN= EB(giảthiết).Do đó ANE = CBE (c.g.c)Suy ra NAE BCE(hai góc tương ứng)Mà NAE, BCElà hai góc ởvịtrí so le trong nên AN// BC.c) Ta có AM // BC (theo câu a) và AN // BC (theo câu b)Do đó qua điểm A có hai đường thẳng song song với BC nên theo tiên đềEuclid, hai đường thẳng AM và AN trùng nhau hay ba điểm A, M, N thẳng hàng.Lại có ANE = CBE (theo câu b) nên AN = CB (hai cạnh tương ứng)Mặt khác AM = BC (theo câu a)Do đó AM = AN (cùng bằng BC) Mà ba điểm A, M, N thẳng hàng nên A là trung điểm của MN.a: Xét ΔAMB và ΔCMD có
MA=MC
góc AMB=góc CMD
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
=>AB//CD và AB=CD
c: Xét tứ giác AKBC có
N là trung điểm chung của AB và KC
nên AKBC là hình bình hành
=>AK//BC
mà AD//BC
nên D,A,K thẳng hàng
a) Xét ΔMAB và ΔMCK có
MA=MC(M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMK}\)(hai góc đối đỉnh)
MB=MK(gt)
Do đó: ΔMAB=ΔMCK(c-g-c)
Suy ra: AB=CK(hai cạnh tương ứng)
Ta có: ΔMAB=ΔMCK(cmt)
nên \(\widehat{MAB}=\widehat{MCK}\)(hai góc tương ứng)
mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{MCK}=90^0\)
\(\Leftrightarrow CK\perp CM\) tại C
hay CK\(\perp\)AC(Đpcm)
b) Xét ΔANC và ΔBNI có
AN=BN(N là trung điểm của AB)
\(\widehat{ANC}=\widehat{BNI}\)(hai góc đối đỉnh)
NC=NI(gt)
Do đó: ΔANC=ΔBNI(c-g-c)
Suy ra: \(\widehat{ACN}=\widehat{BIN}\)(hai góc tương ứng)
mà \(\widehat{ACN}\) và \(\widehat{BIN}\) là hai góc ở vị trí so le trong
nên AC//BI(Dấu hiệu nhận biết hai đường thẳng song song)
Xét ΔAMK và ΔCMB có
MA=MC(M là trung điểm của AC)
\(\widehat{AMK}=\widehat{CMB}\)(hai góc đối đỉnh)
MK=MB(gt)
Do đó: ΔAMK=ΔCMB(c-g-c)
Suy ra: \(\widehat{AKM}=\widehat{CBM}\)(hai góc tương ứng)
mà \(\widehat{AKM}\) và \(\widehat{CBM}\) là hai góc ở vị trí so le trong
nên AK//BC(Dấu hiệu nhận biết hai đường thẳng song song)