Cho hình chữ nhật ABCD (AB>AD).DH vuông góc với AC tại H. I là trung điểm của CH. Gọi M là trung điểm CD. Qua M kẻ đường thẳng vuông góc AB cắt AB tại N. CM:
a, tứ giác ADMN là hình chữ nhật
b, MI vuông góc AC
c, tam giác DIN vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tứ giác ADMN có
góc A =góc D = 90 độ ( DH nhận biết hcn )
góc N = 90 độ ( gt )
=>Tứ giác ADMN là hcn ( tứ giác có 3 góc vuông)
b, Xét tam giác CHD có:
CI=IH ( gt ) ; CM=MD ( gt )
=>MI là đường TB của tam giác CDH => MI // DH ( tc đg tb )
Mà DH vuông góc vs AC => MI vuông góc vuông
c, tự làm nhé
a: Xét tứ giác AMND có
\(\widehat{MAD}=\widehat{ADN}=\widehat{MND}=90^0\)
nên AMND là hình chữ nhật
1: Xét tứ giác AKMH có
\(\widehat{AKM}=\widehat{AHM}=\widehat{HAK}=90^0\)
Do đó: AKMH là hình chữ nhật
a, xét tứ giác ADMN có : ^NAD = ^ADM = ^ANM = 90
=> ADMN là hình chữ nhật
b, có M là trung điểm của DC (gt)
I là trung điểm của CH (gt)
=> MI là đường trung bình của tam giác DHC (đn)
=> MI // DH (tc)
DH _|_ AC (gt)
=> MI _|_ AC
c, gọi AM cắt DM tại O
ANMD là hình chữ nhật (câu a)
=> AM = DN (tc) (1) và O là trung điểm của AM (tc)
xét tam giác AIM vuông tại I
=> IO = AM/2 và (1)
=> IO = DN/2
=> tam giác DNI vuông tại I (đl)